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1. Observations. Let V be a complex vector space of dimension I.
An element s € GL(V) is called a reflection if it has finite order and its fixed
point set Fix(s) is a hyperplane, i.e., one-codimensional subspace. A
unitary reflection group is a finite subgroup of GL(V) generated by reflec-
tions. It is known that one may choose a G-invariant Hermitian form on
V. Let G be a unitary reflection group. Let ./ be the set of reflecting
hyperplanes H=Fix(s) where s € G is a reflection. We call 1 the arrange-
ment defined by G. Denote the cardinality of 1 by =.

Definition 1.1.

t=t(G)=_2lﬁ.

The irreducible unitary reflection groups were completely classified by
G.C. Shephard and J.A. Todd [4]. From their table we have the following

Observation 1.2. For an irreducible unitary reflection group G, the
number t is a positive integer.

Let ./ be the arrangement defined by G. FixH e /. Define the
restriction of J to H by

A'={HNK|K e, K+H]}.
Then (4" is a finite collection of hyperplanes in H. Let n” denote the
cardinality of .4”. The restrictions ./ was studied by P. Orlik and L.
Solomon [2]. From the study we observe

Observation 1.3. For an irreducible unitary reflection group G, we
have

t=n—n""+1.

This observation is, of course, stronger than the previous one 1.2. In
this note we will give a proof of Observation 1.3 without using classifica-
tion.

When G is an irreducible unitary reflection group defined over the real
number field, G is a Coxeter group. In this case, the number ¢ is equal to
the Coxeter number and Observation 1.8 was proved in [3, Theorem 3.7]
without using classification.

2. The main results. Let G be a unitary reflection group acting on
a complex vector space V of dimension I. Choose a G-invariant Hermitian
form(, )on V.

Let .4 be the arrangement defined by G. Let Ke 1. We denote the
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orthogonal complement of K by K+. Then K! is of dimension one. Choose
ax € Kt such that |ax*=(ax, ax)=1.
In the rest of this note we assume that G is an irreducible unitary
reflection group.
Proposition 2.1. Let t=2n/l. For any veV, we have
23 (v, ap)ag=tv.
Ked
Proof. Define a map f: V-V by
f('U)ZK;J v, ag)og.

Then f is C-linear. Note that the definition does not depend upon choice
of ax (K e ) aslong as (ag, ax)=1. Letge G, veV. Wehave
Sl = 2, (9(), aax= 2, v, g™ (ax))ex

=g [K;'J (0, g7 (a9 (a)]=9(f (V).

By Schur’s lemma, there exists a constant number C such that f(v)=Cv
forallveV. Lete,e, ---,e be an orthonormal basis of V. To determine
C we compute

l l
CZ=Z (f(ei)’ ef)=Z Z \(ei, “K)F: Z ‘aK]ZI’I’L.
i=1 i=1Ked Ked

Thus C=n/l=t/2.

Proposition 2.2. Let He J. Then

t=2 > |(ag, ax) .
Ked
Proof. By Proposition 2.1, we have
tlvf=0v, v)=2 > |(v, ax).
Ked

Put v=ay.

Remark. When G is defined over the real number field, Proposition
2.2 is the known formula [1, Ch. 5, §6.2, Th. 1, Cor.].

Fix He J. Letn” denote the cardinality of A"={HNK|Ke A, K+
H).

Theorem 2.3.

t=n—n""+1.

In particular the cardinality of A" does not depend on H e J.

Corollary 2.4. For an irreducible unitary reflection group G, t is an
integer.

The rest is devoted to the proof of Theorem 2.3. Fix H e . Define

A'={HNK|K e A, K+H}.
Then A" is a finite collection of (I—2)-dimensional vector subspaces of H.
Let X e 1”. Denote by X! the orthogonal complement of X in V. Then
X' is of dimension two. Define
Ax={H e A|XCH}, Ax={X'NK|K e J4}.
Then 1% is a finite collection of one-dimensional vector subspaces of X*.
Let
Gx={g e G| XCFix(g9)}.

Then Gy is a unitary reflection group by [5, 1.5]. Since X* is G-stable,
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there is a natural injection G;,—GL(X*). Denote the image of this injec-
tion by G#. Then G% is a unitary reflection group, and the arrangement
defined by G+ is AL,

Lemma 2.5.

#JX =2 th ‘(aH! aK) \2-

Proof. Note that a, ¢ X+ for K € .
Case 1. If G#% is irreducible, we can apply Proposition 2.2 to get the
desired result.
Case 2. If Gy is reducible, then
tAr=4Ax=2.
Let JAy={H, K}. Then (ay, ax)=0. So, in this case,
Y Ay=2=2 K;AXl(aH’ aK)lz‘

Define
A'=A\H}, Ary=JAx\{H} Xed").
Then the following lemma is obvious:
Lemma 2.6.

A= U Ay (disjoint).

xXeA”

We give a proof of Theorem 2.3 by applying Proposition 2.2, Lemma
2.6, and Lemma 2.5
I(“H, 051{)|2:2+2 Z ‘(0511, aK)lZ

Ked'

Z Z l((XH’ 0‘1<)l2
XEA K€My
=2+ >, @2 2 (g, ax)f—2)

xed Kedx
=2+ >, $Ax—2)=2+ 3, (4 A—D—4A"

Xed” xXed

=24 3 b M0 =24 B — 0 =1+n—n".
Xed

t=2 3"
Ked
=242
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