87. A Remark on the Class-number of the Maximal Real Subfield of a Cyclotomic Field

By Hiroyuki OSADA

Department of Mathematics, Rikkyo University

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 13, 1989)

For an integer m>2, we denote by $h^*(m)$ the class-number of the field $K={old Q}(\zeta_m+\zeta_m^{-1})$

where ζ_m is a primitive *m*-th root of unity.

It is conjectured that $p \nmid h^+(p)$ for all primes p. The Theorem 2 of [2] says $h^+(p)=1$ for all p < 163, $h^+(163)=4$ if we assume the generalized Riemann hypothesis.

In this note, we shall show that

Theorem. Let p and (p-1)/2 = q be primes. If $h^+(p) < p$, then $h^+(p) = 1$.

follows easily from the following proposition (see Washington [3], Theorem 10.8).

Proposition. Let q be a prime and K/Q be a cyclic extension of degree q. Let C(K) be the ideal class group of K. Let r be a prime such that r=q. Further let f be the order of $r \mod q$.

If C(K) has a subgroup which is isomorphic to $Z/r^n Z$ for some integer $n \ge 1$, then C(K) has a subgroup which is isomorphic to $(Z/r^n Z)^f$.

Proof of Theorem. We may, and shall, suppose q to be odd, as q=2 implies p=5 and $h^+(5)=1$.

Let $h^+(p) > 1$, and r be a prime factor of $h^+(p)$. Then we have $r \neq q$ (see Iwasawa [1]), and the above proposition says $r^{f} | h^+(p)$, where f is the order of $r \mod q$. If r is odd, then $r^{f} = 2kq+1$ for some integer $k \ge 1$. Then $h^+(p) \ge 2q+1=p$ contrary to the hypothesis $h^+(p) < p$, so we should have r=2. Then $2^{f} = (2k-1)q+1$ for some integer k, but k > 1 would be contrary as above to the hypothesis $h^+(p) < p$, so $2^{f} = q+1$, and f must be a prime. From $2^{f+1}-1=2q+1=p$ follows that f+1 is also a prime. Hence f=2. Therefore we get p=7 and $h^+(p)=1$. This completes the proof.

Remark. Professor Iwasawa has kindly communicated to me that we could prove the following lemma just as above:

Lemma. Let K/Q be a cyclic extension of degree q, and denote the class number of K by h_{κ} . If

(1) $q \ge 5$ and both q and 2q+1 are prime,

(2) $(h_{\kappa}, q) = 1, h_{\kappa} < 2q + 1,$

then $h_{\kappa}=1$.

This is a little more general result than our theorem, which follows immediately from this lemma using $h^+(5) = h^+(7) = 1$. q is assumed to be ≥ 5

No. 9]

in this lemma, because for q=2, 3, our statement does not hold as the following examples show:

$$\begin{array}{ll} q=2,\ 2q+1=5\colon & K=Q(\sqrt{-23}) \quad \text{or} \quad Q(\sqrt{79}),\ h_{\scriptscriptstyle K}=3{<}5.\\ q=3,\ 2q+1=7\colon & K=\text{cubic subfield of } Q(\zeta_{\scriptscriptstyle 163}),\ h_{\scriptscriptstyle K}=4{<}7. \end{array}$$

References

- K. Iwasawa: A note on class numbers of algebraic number fields. Abh. Math. Sem. Univ. Hamburg, 20, 257-258 (1956).
- [2] F. J. van der Linden: Class Number Computations of Real Abelian Number Fields. Math. Comp., vol. 39, no. 160, pp. 693-707 (1982).
- [3] L. C. Washington: Introduction to cyclotomic fields. Graduate Texts in Math., 83, Springer, Berlin, Heidelberg, New York (1982).