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A Note on the Mean Value of the Zeta
and L.functions. VI

By Yoichi MOTOHASHI
Department of Mathematics, College of Science and Technology,

Nihon University

(Communicated by Kunihiko KODAIRA, M. J. A., Oct. 12, 1989)

Continuing our previous work [3] we show an explicit ormula or
L(T, z/)=(/-)-f 1(+i(T/

We retain the notations introduced in [3] rom the theory of automorphic
functions.

We define D(r, s) as the analytic continuation o

f: x-(l+x) exp (-- (- log (l+ x)))dx,
and put

(u, v, w, z )=--i(2)-v- cos (-(u--w))
sin (u/v+w+z--2r) F (u/v/w/z--1)/-r

F((u/v+w/z--1)----r)F(1--w--z+r)F(1--u--z+r)D(r, z)dr.

The path o integration is curved to ensure that the poles of the first three
actors on the integrand lie on the right o the path and those o the re-
maining tactors on the left; it is assumed that u, v, w, z, are such that
the contour can be drawn. Also we define (u, v, w, z;) to be the one
which is obtained by replacing in the above the actors cos ((z/2)[u-w)) and
sin((=/2)(u+ v+w+ z-2r)) by cos (u) and cos ((/2)(u+w+ 2z-2r)), respec-
tively. It can be shown that V and admit meromorphic cvntinuations
over the entire C; hereater the symbols and will denote these mero-
morphic unctions. and are o rapid decay" Uniormly or any
bounded u, v, w, z and or any fixed c0 we have V=O([l-e-’) nd
(h 0([ I- c) when Im1 tends to infinity while Re $ remains bounded. Fur-.
ther we put, with an obvious abuse o notation,

@( T, A)=2 Re {(-)(Pr i)},

A(k; T, A)=2 Re/(Pr k---)},
where Pr is the point (1/2+iT, 1/2--iT, 1/2+iT, 1/2--iT), TO, and k=l, 2, 3....
We should note that for any fixed BO A(k; T, A)=O(A-) i k=B, and
=O((kA) -’) i kB, where the implied constants depend only on B.

Then our main result is as follows"
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Theorem. If OAT(log T) -1 we have- 15(1 +2i)l
8( T,

(1)

+H (; T, )+ q.H. A(k;T,A)+O(T-logT),

where, with certain absolute constants c(a, b f, g), a, b, f, gO,

Fo(T, )=Re {(A)-: z+os
e(a,b’, [’ )()(P’F/( 1

+i(T+ t))

and the implied constant in the error-term is absolute.
The above should be compared with the ollowing ’explicit formula or

the mean square o g(s)" For any 3, T>0,

F k2
e- +27--1og(2z)--2

(2)
exp ((-T))cos (5)+41 d(n)I: sin (2unx)

(+x)

cos (T log (1+ ))exp (--( log (1+ )))dx.
From this we can deduce Atkinson’s ormula [1, Theorem]. In fact, as
Atkinson did in a bit different context, we apply Voronoi’s ormula to the
last sum, getting a uniform convergence with respect to A0. Then tak-
ing the limit o both sides as A0 and integrating the result we obtain
Atkinson’s ormula.

Now, comparing (1)with (2) the outward similarity may give rise to
the problem of finding a sum ormula o Voronoi type or the actors
aH() and a,H,Q). I the analogy between (1) and (2) holds in the
most optimistic way, then we would be able to deduce rom (1)a complete
{-version o Atkinson’s ormula.

Though we are unable to solve this we can deduce rom (1) two con-
sequences on the asymptotic behaviour o the ourth power mean of 5(s)
which enhance the analogy between (1) and (2)"

Corollary 1. If T/gAT(log T)- then we have

I(T, A)=, = a]/H sin log
4eT ]

Corollary 2. Let

J(V, ):.[: I(T, )dT.

Then we have, for V/gAV(logV)-,
(J(V, A)=VP(log V)+ a7/:H cos xlog

j=l
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where P is a certain polynomial of degree 4.
Corollary 1 implies Iwaniec’s result [2, Theorem 4] and Corollary 2

yields an alternative proof of Zavorotnyi’s claim [5].
A detailed proof o our result is available in [4].
We acknowledge our indebtness to Proessors Ivi5 and Jutila or their

kind comments on the earier version of the present note.
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