73. Theta Series and the Poincaré Divisor

By Shoji KOIZUMI Kogakuin University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1989)

Let H_n be the Siegel upperhalf space of degree n, that is, $H_n = \{z \in M_n(C) \mid z=z, \mathcal{G}_m z > 0\}$. Then the classical theta $\vartheta \begin{bmatrix} k' \\ k'' \end{bmatrix} (z \mid x)$ may be regarded as a function of (z, k', k'', x) on $H_n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{C}^n$. Now we introduce a complex variable k = zk' + k'', and after a minor modification of $\vartheta \begin{bmatrix} k' \\ k'' \end{bmatrix} (z \mid x)$, we define a new series $\vartheta(z, k, x)$, which represents a holomorphic function on the space $H_n \times \mathbb{C}^n \times \mathbb{C}^n$ whose second factor \mathbb{C}^n will be regarded as the dual space of the third factor \mathbb{C}^n in a natural way. This new function $\vartheta(z, k, x)$ substitutes for the classical theta and sometimes has an advantage because of its complex analyticity. For instance, using this function we can explicitly write down a theta function whose divisor is the Poincaré divisor.

1. The dual lattice. Let (E, G) be a pair of *n*-dimensional *C*-vector space *E* and a lattice subgroup *G*. Assume that the quotient E/G is an abelian variety, or equivalently that there are a *C*-basis (e_1, \dots, e_n) and an *R*-basis (f_1, \dots, f_{2n}) of *E* such that $(f_1, \dots, f_{2n}) = (e_1, \dots, e_n)(z \ 1_n)$ with a matrix *z* in the Siegel upperhalf space H_n and the identity *n*-matrix 1_n (which is sometimes denoted simply by 1), and that *G* is generated by $(e_1, \dots, e_n)(z \ e)$ with an $(n \times n)$ -matrix *e* having *Z*-coefficients and det $e \neq 0$. Under this *C*-basis, *E* is identified with C^n and *G* is generated by the column vectors of $(z \ e)$, denoted by $G = \langle z \ e \rangle$. The *R*-coordinates $\mathbf{x} = \begin{pmatrix} x' \\ x'' \end{pmatrix}$, x' and $x'' \in \mathbf{R}^n$, of a point $x \in C^n$ under the latter basis are determined by x = $(z \ 1_n)\mathbf{x} = zx' + x''$.

The classical theta series $\vartheta \begin{bmatrix} k' \\ k'' \end{bmatrix} (z \mid x)$ is defined by

$$\vartheta \begin{bmatrix} k' \\ k'' \end{bmatrix} (z \mid x) = \sum_{r \in \mathbb{Z}^n} e\left(\frac{1}{2} (r+k') z(r+k') + (r+k')(x+k'')\right),$$

where (z, k', k'', x) are variables on $H_n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{C}^n$, and for each $s = (z \ 1) \binom{s'}{s''}$, $s', s'' \in \mathbb{Z}^n$, we have

$$\vartheta \begin{bmatrix} k' \\ k'' \end{bmatrix} (z \mid x+s) = \vartheta \begin{bmatrix} k' \\ k'' \end{bmatrix} (z \mid x) e \left(-{}^{t}s'x - \frac{1}{2}{}^{t}s'zs' - {}^{t}k''s' + {}^{t}k's'' \right),$$

which suggests that $\binom{-k'}{k'}$ should be regarded as the *R*-coordinates of a point \check{t} of the dual space $\hat{E} = \operatorname{Hom}_{R}(E, C)/\operatorname{Hom}_{C}(E, C)$ of $E = C^{n}$, which is naturally identified with $\operatorname{Hom}_{R}(E, R)$ by the restriction of the projection

map π : Hom_{*R*}(*E*, *C*) $\rightarrow \hat{E}$. On the other hand the space \hat{E} is also isomorphic to the space $\overline{\text{Hom}}_{c}(E, C)$ of anti-linear forms on *E* by $2\sqrt{-1}$ times the projection, and accordingly has a structure of *n*-dimensional *C*-vector space.

These two identifications of \hat{E} with $\overline{\text{Hom}}_{c}(E, C)$ and with $\text{Hom}_{R}(E, R)$ give rise to the two bilinear forms on $E \times \hat{E}$,

a sesquilinear one $[\cdot, \cdot]$: $E \times \hat{E} \longrightarrow C$,

and

an *R*-bilinear one $I(\cdot, \cdot)$: $E \times \hat{E} \longrightarrow R$ satisfying $I(x, k) = \mathcal{G}_m[x, k]$ for $(x, k) \in E \times \hat{E}$.

Now, let $(\hat{e}_1, \dots, \hat{e}_n)$ be the *C*-basis of \hat{E} dual to (e_1, \dots, e_n) with respect to $[\cdot, \cdot]$, and $(\hat{f}_1, \dots, \hat{f}_{2n})$ the *R*-basis dual to (f_1, \dots, f_{2n}) with respect to $I(\cdot, \cdot)$. Then we have

We take
$$(\hat{\mathfrak{f}}_{n+1}, \dots, \hat{\mathfrak{f}}_{2n}) = (\hat{\mathfrak{e}}_1, \dots, \hat{\mathfrak{e}}_n)(\mathcal{G}_m z)^{-1}(-1 z)$$
.
We take $(\hat{\mathfrak{f}}_{n+1}, \dots, \hat{\mathfrak{f}}_{2n}, -\hat{\mathfrak{f}}_1, \dots, -\hat{\mathfrak{f}}_n)$ and $(\hat{\mathfrak{e}}_1, \dots, \hat{\mathfrak{e}}_n)(\mathcal{G}_m z)^{-1}$ as R - and C -
coordinate vectors on \hat{E} , respectively, and write, for $\mathfrak{t} \in \hat{E}$

$$\mathbf{\check{t}} = (\hat{\mathbf{f}}_{n+1}, \cdots, \hat{\mathbf{f}}_{2n}, -\hat{\mathbf{f}}_1, \cdots, -\hat{\mathbf{f}}_n) \binom{k'}{k''} = (\hat{\mathbf{e}}_1, \cdots, \hat{\mathbf{e}}_n) (\mathcal{G}_m z)^{-1} k,$$

where $k \in \mathbb{C}^n$, k' and $k'' \in \mathbb{R}^n$ with $k = (z \ 1) \binom{k'}{k''}$. The space \hat{E} is identified with \mathbb{C}^n under this \mathbb{C} -coordinate system. Using these notation we have $[x, k] = {}^t \bar{x} (\mathcal{G}_m z)^{-1} k$,

and

$$I(x, k) = -{}^{t}x'k'' + {}^{t}x''k'.$$

(1.1) Let $G = \langle z \rangle$ be a lattice subgroup of E. Then the lattice subgroup \hat{G} of \hat{E} dual to G is defined by

2. The function $\vartheta(z, k, x)$.

Definition (2.0). A holomorphic function $\vartheta(z, k, x)$ on $H_n \times \hat{E} \times E$ is defined by

$$\begin{split} \vartheta(z, k, x) &= \sum_{r \in \mathbb{Z}^n} e\Big(\frac{1}{2}{}^t (r + z^{-1}k + z^{-1}x) z(r + z^{-1}k + z^{-1}x)\Big) \\ &= e\Big(\frac{1}{2}{}^t (x + k'') z^{-1} (x + k'')\Big) \vartheta \begin{bmatrix} k' \\ k'' \end{bmatrix} (z \mid x) \\ &= e\Big(\frac{1}{2}{}^t (k + x) z^{-1} (k + x)\Big) \vartheta \begin{bmatrix} 0 \\ 0 \end{bmatrix} (z \mid k + x). \end{split}$$

This function actually depends only on (z, k+x).

(2.1) For a fixed z, the function $\vartheta(z, k, x)$ satisfies the relation: for $q = (z \ 1) \binom{q'}{q''} = (z^{t}e^{-1} \ 1) \binom{q'_{0}}{q''_{0}}, \ q' = {}^{t}e^{-1}q'_{0} \in {}^{t}e^{-1}Z^{n} \text{ (or, } q'_{0} \in Z^{n}), \ q'' = q''_{0} \in Z^{n}, \text{ and}$ $s = (z \ 1) \binom{s'}{s''} = (z \ e) \binom{s'_{0}}{s''_{0}}, \ s' = s'_{0} \in Z^{n}, \ s'' = es''_{0} \in eZ^{n} \text{ (or, } s''_{0} \in Z^{n})$ $\vartheta(z, k+q, x+s) = \vartheta(z, k+zq', x) e \binom{\iota(q''+s'')z^{-1}(k+x) + \frac{1}{2}\iota(q''+s'')z^{-1}(q''+s'') + {}^{t}q'q'')}{2}.$ Proof. In fact,

$$\begin{split} \vartheta(z, k+q, x+s) &= \sum_{r \in \mathbb{Z}^n} e \Big(\frac{1}{2} {}^t (r+z^{-1}k+q'+z^{-1}q''+z^{-1}x+s'+z^{-1}s'') \\ &\times z(r+z^{-1}k+q'+z^{-1}q''+z^{-1}x+s'+z^{-1}s'') \Big), \end{split}$$

(applying the substituion of r+s' by r, and the congruence equality ${}^ts''q' \equiv 0 \mod Z$,)

$$= \sum_{r \in \mathbb{Z}^{n}} e\left(\frac{1}{2}{}^{t}(r+z^{-1}(k+zq')+z^{-1}x)z(r+z^{-1}(k+zq')+z^{-1}x) + {}^{t}(q''+s'')(r+z^{-1}k+q'+z^{-1}x) + \frac{1}{2}{}^{t}(q''+s'')z^{-1}(q''+s'') + {}^{t}q'q''\right)$$

= $\vartheta(z, k+zq', x)e({}^{t}(q''+s'')z^{-1}(k+x) + \frac{1}{2}{}^{t}(q''+s'')z^{-1}(q''+s'') + {}^{t}q'q'').$
(2.2) The function $\vartheta(z, k, x)$ of $\binom{k}{x}$ is periodic with period $\binom{zZ^{n}}{zZ^{n}}$, and

a theta function with respect to the period matrix $\begin{pmatrix} z & \mathbf{1}_n & 0 & 0 \\ 0 & 0 & z & \mathbf{1}_n \end{pmatrix}$.

For
$$q = zq' + q''$$
 and $s = zs' + s''$ with $q', q'', s', s'' \in \mathbb{Z}^n$, we have
 $\vartheta(z, k+q, x+s) = \vartheta(z, k, x) e\left({}^t(q''+s'')z^{-1}(k+x) + \frac{1}{2}{}^t(q''+s'')z^{-1}(q''+s'')\right),$
 $\vartheta(z, k, x+s) = \vartheta(z, k, x) e\left({}^ts''z^{-1}x + \frac{1}{2}{}^ts''z^{-1}s'' + {}^tkz^{-1}s''\right)$
 $= \vartheta(z, k, x) e\left({}^ts''z^{-1}x + \frac{1}{2}{}^ts''z^{-1}s'' + I(s, k) + {}^tk''z^{-1}s\right)$

and the similar formula for $\vartheta(z, k+q, x)$.

According to these formulas we know that for fixed z, k_1 , k_2 , the following three conditions for the two theta functions $\vartheta(z, k_i, x)$, i=1, 2, of x with respect to $\langle z | \rangle$ are equivalent:

(a) $k_1 \equiv k_2 \mod \langle z | 1 \rangle$.

(b) The two theta functions $\vartheta(z, k_1, x)$ and $\vartheta(z, k_2, x)$ coincide up to a trivial theta function factor.

(c) The two theta functions $\vartheta(z, k_1, x)$ and $\vartheta(z, k_2, x)$ are of the same type up to a factor of a trivial theta function.

The statement obtained by exchanging x and k in the above is obviously true, and we get

Proposition (2.3). The theta function $\vartheta(z, k, x)$ determines the Poincaré divisor on the product of the abelian variety $C^n/\langle z \rangle$ and its dual $C^n/\langle z \rangle$.

3. The function $\eta_e(z, k, x)$.

Notation. Let e be a matrix as above, let ε be the smallest positive integer such that $\varepsilon e^{-1} \in M(n, Z)$, and let $U({}^te)$ be a complete set of representatives of ${}^te^{-1}Z^n \mod Z^n$.

Definition (3.0). A holomorphic function $\eta_e(z, k, x)$ on $H_n \times C^n \times C^n$ is defined by

$$\eta_{\epsilon}(z, k, x) = \sum_{p' \in U^{(t_{\epsilon})}} \vartheta(z, k+zp', x) (\vartheta(z, k+zp', 0))^{\varepsilon-1}.$$

265

No. 7]

The function $\eta_e(z, k, x)$ is well-defined, that is, independent of the choice of the representatives $U({}^{\iota}e)$. (See (2.2).)

(3.1) Let q and s be as in (2.1). Then $\eta_{e}(z, k+q, x+s) = \eta_{e}(z, k, x) e^{\binom{t}{(\varepsilon q''+s'')z^{-1}k+t(q''+s'')z^{-1}x+\frac{\varepsilon}{2}tq''z^{-1}q''+tq''z^{-1}s''} + \frac{1}{2}ts''z^{-1}s'')$ $= \eta_{e}(z, k, x) e^{\binom{t}{\binom{q_{0}'}{s_{0}'}}\binom{0}{\varepsilon z^{-1}}\frac{0}{z^{-1}}}_{tez^{-1}}\binom{k}{x}+t\binom{q_{0}'}{s_{0}'}\binom{0}{0}\frac{0}{\frac{1}{2}\varepsilon z^{-1}}\frac{0}{\frac{1}{2}tez^{-1}e}}_{0}\binom{q_{0}'}{\frac{1}{2}tez^{-1}}\binom{q_{0}'}{\frac{1}{2}tez^{-1}}\binom{q_{0}'}{\frac{1}{2}tez^{-1}e}}_{\frac{1}{2}tez^{-1}e}\binom{q_{0}'}{s_{0}''}}.$ Thus the function (z, k, w) is a those function of variables (k, w) of two

Thus the function $\eta_e(z, k, x)$ is a theta function of variables (k, x) of type $\left(\begin{pmatrix} z^t e^{-1} & 1 & 0 & 0 \\ 0 & 0 & z & e \end{pmatrix} \middle| h, (B, m), f, l \right)$, that is,

the theta factor part in the above

$$= e\left(\frac{1}{2\sqrt{-1}} {\binom{\iota}{\left(\frac{\bar{q}}{\bar{s}}\right)}}h + {\binom{\iota}{\left(\frac{q}{s}\right)}}f\right){\binom{k}{x}} + \frac{1}{4\sqrt{-1}} {\binom{\iota}{\left(\frac{\bar{q}}{\bar{s}}\right)}}h + {\binom{\iota}{\left(\frac{q}{s}\right)}}f\right){\binom{q}{s}}$$
$$+ \frac{1}{2} {\binom{q'_{0}}{s'_{0}}}B{\binom{q'_{0}}{s'_{0}}}{\binom{q'_{0}}{s'_{0}}} + {^{\iota}m}{\binom{q'_{0}}{s'_{0}}} + {^{\iota}l\binom{q}{s}},$$

where

=

$$h = \begin{pmatrix} \varepsilon (\mathcal{G}_m z)^{-1} & (\mathcal{G}_m z)^{-1} \\ (\mathcal{G}_m z)^{-1} & (\mathcal{G}_m z)^{-1} \end{pmatrix}, \qquad f = -h + 2\sqrt{-1} \begin{pmatrix} \varepsilon z^{-1} & z^{-1} \\ z^{-1} & z^{-1} \end{pmatrix},$$
$$B = \begin{pmatrix} 0 & 0 & 0 & 0 \\ \varepsilon^t e^{-1} & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & {}^t e & 0 \end{pmatrix}, \qquad m = 0 \quad \text{and} \quad l = 0.$$

Proof. Applying the formula (2.1) to our case we have the first equality, and can directly check the other parts.

(3.2) If we put q'=q''=0 in the above equality, then for $s=(z\ 1)\binom{s'}{s''}\in G$, $s'\in Z^n$, $s''\in eZ^n$,

$$\begin{aligned} \eta_e(z, k, x+s) &= \eta_e(z, k, x) e\left(\frac{1}{2} t's''z^{-1}s'' + t(k+x)z^{-1}s''\right) \\ &= \eta_e(z, k, x) e\left(t's''z^{-1}x + \frac{1}{2} t's''z^{-1}s'' + I(s, k) + tk''z^{-1}s\right). \end{aligned}$$

In the same way, for $q = (z \ 1) \begin{pmatrix} q' \\ q'' \end{pmatrix} \in \hat{G}, q' \in {}^{t}e^{-1}Z^{n}, q'' \in Z^{n},$

$$\eta_{e}(z, k+q, x) = \eta_{e}(z, k, x) e\left(\frac{1}{2}\varepsilon^{t}q''z^{-1}q'' + {}^{t}(\varepsilon k+x)z^{-1}q''\right)$$

= $\eta_{e}(z, k, x) e\left(\varepsilon^{t}q''z^{-1}k + \frac{1}{2}\varepsilon^{t}q''z^{-1}q'' - I(x, q) + {}^{t}x''z^{-1}q\right).$

Proof. These are special cases of the formula (3.1) and we have only to remark

$${}^{t}kz^{-1}s'' = -{}^{t}k''s' + {}^{t}k's'' + {}^{t}k''z^{-1}s = I(s, k) + {}^{t}k''z^{-1}s,$$

266

and

$${}^{t}xz^{-1}q'' = -{}^{t}x''q' + {}^{t}x'q'' + {}^{t}x''z^{-1}q = -I(x,q) + {}^{t}x''z^{-1}q.$$

For a fixed (z, k), the function $\eta_e(z, k, x)$ of x is a theta function with respect to $\langle z \ e \rangle$. The first formula in (3.2) says that if two theta functions $\eta_e(z, k_1, x)$ and $\eta_e(z, k_2, x)$ are of the same type up to a factor of a trivial theta function, then $k_1 - k_2 \in \langle z^t e^{-1} \ 1_n \rangle$, and the second formula says that if $k_1 - k_2 \in \langle z^t e^{-1} \ 1_n \rangle$, then $\eta_e(z, k_2, x)$ is the product of $\eta_e(z, k_1, x)$ and a certain trivial theta. The similar statement for the function $\eta_e(z, k, x)$ of k naturally holds true. Thus, we have

Theorem (3.3). For fixed z and e, the holomorphic function $\eta_e(z, k, x)$ of (k, x) on $\mathbb{C}^n \times \mathbb{C}^n$ is a theta function with respect to the lattice group $\langle z^t e^{-1} 1 \rangle \times \langle z e \rangle$. The two abelian varieties $\mathbb{C}^n / \langle z e \rangle$ and $\mathbb{C}^n / \langle z^t e^{-1} - 1 \rangle$ are dual to each other, and the divisor X of $\eta_e(z, k, x)$ on the product of the two varieties is a corresponding Poincaré divisor.

Note (3.4). If we are just interested in theta functions with the Poincaré divisor on $C^n/\langle z^t e^{-1} - 1 \rangle \times C^n/\langle z e \rangle$, it is easily seen that the functions $\vartheta \begin{bmatrix} 0\\0 \end{bmatrix} (z | k+x)$ and

$$\xi_e(z, k, x) = \sum_{p' \in U(i_e)} \vartheta \begin{bmatrix} p' \\ 0 \end{bmatrix} (z \mid k + x) \left(\vartheta \begin{bmatrix} p' \\ 0 \end{bmatrix} (z \mid k) \right)^{e-1}$$

stand, respectively, for the above $\vartheta(z, k, x)$ and $\eta_e(z, k, x)$.

References

- S. Koizumi: Theta Functions. Kinokuniya, Tokyo (1982) (in Japanese); (English Edition, to appear).
- [2] D. Mumford: Abelian Varieties. Oxford Univ. Press (1970).
- [3] A. Weil: Introduction à l'étude des variétés Kählériennes, Hermann, Paris (1958).

No. 7]