73. Theta Series and the Poincaré Divisor

By Shoji Koizumi
Kogakuin University
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1989)

Let H_{n} be the Siegel upperhalf space of degree n, that is, $H_{n}=$ $\left\{\left.z \in M_{n}(C)\right|^{t} z=z, \mathscr{I}_{m} z>0\right\}$. Then the classical theta $\vartheta\left[\begin{array}{l}k^{\prime} \\ k^{\prime \prime}\end{array}\right](z \mid x)$ may be regarded as a function of $\left(z, k^{\prime}, k^{\prime \prime}, x\right)$ on $H_{n} \times \boldsymbol{R}^{n} \times \boldsymbol{R}^{n} \times \boldsymbol{C}^{n}$. Now we introduce a complex variable $k=z k^{\prime}+k^{\prime \prime}$, and after a minor modification of $\vartheta\left[\begin{array}{l}k^{\prime} \\ k^{\prime \prime}\end{array}\right](z \mid x)$, we define a new series $\vartheta(z, k, x)$, which represents a holomorphic function on the space $H_{n} \times C^{n} \times C^{n}$ whose second factor C^{n} will be regarded as the dual space of the third factor C^{n} in a natural way. This new function $\vartheta(z, k, x)$ substitutes for the classical theta and sometimes has an advantage because of its complex analyticity. For instance, using this function we can explicitly write down a theta function whose divisor is the Poincaré divisor.

1. The dual lattice. Let (E, G) be a pair of n-dimensional C-vector space E and a lattice subgroup G. Assume that the quotient E / G is an abelian variety, or equivalently that there are a C-basis $\left(e_{1}, \cdots, e_{n}\right)$ and an R-basis ($\mathfrak{f}_{1}, \cdots, \mathfrak{f}_{2 n}$) of E such that $\left(f_{1}, \cdots, \mathfrak{f}_{2 n}\right)=\left(e_{1}, \cdots, e_{n}\right)\left(z 1_{n}\right)$ with a matrix z in the Siegel upperhalf space H_{n} and the identity n-matrix 1_{n} (which is sometimes denoted simply by 1), and that G is generated by $\left(\mathrm{e}_{1}, \cdots, \mathrm{e}_{n}\right)(z e)$ with an $(n \times n)$-matrix e having Z-coefficients and $\operatorname{det} e \neq 0$. Under this \boldsymbol{C}-basis, E is identified with \boldsymbol{C}^{n} and \boldsymbol{G} is generated by the column vectors of ($z e$), denoted by $\boldsymbol{G}=\left\langle\begin{array}{ll}z & e\rangle\end{array}\right\rangle$. The \boldsymbol{R}-coordinates $\boldsymbol{x}=\binom{x^{\prime}}{x^{\prime \prime}}, x^{\prime}$ and $x^{\prime \prime} \in \boldsymbol{R}^{n}$, of a point $x \in \boldsymbol{C}^{n}$ under the latter basis are determined by $x=$ ($z 1_{n}$) $\boldsymbol{x}=z x^{\prime}+x^{\prime \prime}$.

The classical theta series $\vartheta\left[\begin{array}{l}k^{\prime} \\ k^{\prime \prime}\end{array}\right](z \mid x)$ is defined by

$$
\vartheta\left[\begin{array}{l}
k^{\prime} \\
k^{\prime \prime}
\end{array}\right](z \mid x)=\sum_{r \in \mathbf{Z}^{n}} \boldsymbol{e}\left(\frac{1}{2}^{t}\left(r+k^{\prime}\right) z\left(r+k^{\prime}\right)+{ }^{t}\left(r+k^{\prime}\right)\left(x+k^{\prime \prime}\right)\right),
$$

where $\left(z, k^{\prime}, k^{\prime \prime}, x\right)$ are variables on $H_{n} \times \boldsymbol{R}^{n} \times \boldsymbol{R}^{n} \times \boldsymbol{C}^{n}$, and for each $s=$ $\left(\begin{array}{ll}z & 1\end{array}\right)\binom{s^{\prime}}{s^{\prime \prime}}, s^{\prime}, s^{\prime \prime} \in \boldsymbol{Z}^{n}$, we have

$$
\vartheta\left[\begin{array}{l}
k^{\prime} \\
k^{\prime \prime}
\end{array}\right](z \mid x+s)=\vartheta\left[\begin{array}{l}
k^{\prime} \\
k^{\prime \prime}
\end{array}\right](z \mid x) e\left(-{ }^{t} s^{\prime} x-\frac{1}{2}{ }^{t} s^{\prime} z s^{\prime}-{ }^{t} k^{\prime \prime} s^{\prime}+{ }^{t} k^{\prime} s^{\prime \prime}\right),
$$

which suggests that $\binom{-k^{\prime \prime}}{k^{\prime}}$ should be regarded as the R-coordinates of a point \mathscr{F} of the dual space $\hat{E}=\operatorname{Hom}_{R}(E, C) / \operatorname{Hom}_{C}(E, C)$ of $E=C^{n}$, which is naturally identified with $\operatorname{Hom}_{R}(E, R)$ by the restriction of the projection
$\operatorname{map} \pi: \operatorname{Hom}_{R}(E, C) \rightarrow \hat{E}$. On the other hand the space \hat{E} is also isomorphic to the space $\overline{\mathrm{Hom}}_{c}(E, C)$ of anti-linear forms on E by $2 \sqrt{-1}$ times the projection, and accordingly has a structure of n-dimensional C-vector space.

These two identifications of \hat{E} with $\overline{\operatorname{Hom}}_{C}(E, C)$ and with $\operatorname{Hom}_{R}(E, R)$ give rise to the two bilinear forms on $E \times \hat{E}$,

$$
\text { a sesquilinear one }[\cdot, \cdot]: E \times \hat{E} \longrightarrow C \text {, }
$$

and

$$
\text { an } \boldsymbol{R} \text {-bilinear one } I(\cdot, \cdot): E \times \hat{E} \longrightarrow \boldsymbol{R}
$$

satisfying $I(x, k)=\mathscr{I}_{m}[x, k]$ for $(x, k) \in E \times \hat{E}$.
Now, let $\left(\hat{e}_{1}, \cdots, \hat{e}_{n}\right)$ be the C-basis of \hat{E} dual to $\left(e_{1}, \cdots, \mathfrak{e}_{n}\right)$ with respect to $[\cdot, \cdot]$, and $\left(\hat{f}_{1}, \cdots, \hat{\mathfrak{f}}_{2 n}\right)$ the R-basis dual to ($\mathfrak{f}_{1}, \cdots, \mathfrak{f}_{2 n}$) with respect to $I(\cdot, \cdot)$. Then we have

$$
\left(\hat{\mathfrak{f}}_{1}, \cdots, \hat{\mathfrak{f}}_{2 n}\right)=\left(\hat{\mathrm{e}}_{1}, \cdots, \hat{\mathrm{e}}_{n}\right)\left(\mathcal{I}_{m} z\right)^{-1}(-1 z) .
$$

We take $\left(\hat{f}_{n+1}, \cdots, \hat{\mathrm{f}}_{2 n},-\hat{\mathrm{f}}_{1}, \cdots,-\hat{\mathrm{f}}_{n}\right)$ and $\left(\hat{\mathrm{e}}_{1}, \cdots, \hat{\mathrm{e}}_{n}\right)\left(\mathcal{I}_{m} z\right)^{-1}$ as R - and C coordinate vectors on \hat{E}, respectively, and write, for $\mathfrak{f} \in \hat{E}$

$$
\mathfrak{f}=\left(\hat{\mathfrak{f}}_{n+1}, \cdots, \hat{\mathfrak{f}}_{2 n},-\hat{\mathfrak{f}}_{1}, \cdots,-\hat{\mathrm{f}}_{n}\right)\binom{k^{\prime}}{k^{\prime \prime}}=\left(\hat{\mathrm{e}}_{1}, \cdots, \hat{\mathrm{e}}_{n}\right)\left(\operatorname{I}_{m} z\right)^{-1} k,
$$

where $k \in \boldsymbol{C}^{n}, k^{\prime}$ and $k^{\prime \prime} \in \boldsymbol{R}^{n}$ with $k=\left(\begin{array}{ll}z & 1\end{array}\right)\binom{k^{\prime}}{k^{\prime \prime}}$. The space \hat{E} is identified with C^{n} under this C-coordinate system. Using these notation we have

$$
[x, k]==^{t} \bar{x}\left(I_{m} z\right)^{-1} k,
$$

and

$$
I(x, k)=-{ }^{t} x^{\prime} k^{\prime \prime}+{ }^{t} x^{\prime \prime} k^{\prime}
$$

(1.1) Let $\boldsymbol{G}=\langle z \quad e\rangle$ be a lattice subgroup of E. Then the lattice subgroup \hat{G} of \hat{E} dual to \boldsymbol{G} is defined by

$$
\begin{aligned}
\hat{\boldsymbol{G}} & =\{k \in \hat{E} \mid I(s, k) \in \boldsymbol{Z} \text { for any } s \in \boldsymbol{G}\} \\
& =\left\langle z^{t} e^{-1} \mathbf{1}\right\rangle=\left\{z q^{\prime}+q^{\prime \prime} \mid q^{\prime} \in^{t} e^{-1} \boldsymbol{Z}^{n}, q^{\prime \prime} \in \boldsymbol{Z}^{n}\right\} .
\end{aligned}
$$

2. The function $\vartheta(z, k, x)$.

Definition (2.0). A holomorphic function $\vartheta(z, k, x)$ on $H_{n} \times \hat{E} \times E$ is defined by

$$
\begin{aligned}
\vartheta(z, k, x) & =\sum_{r \in Z^{n}} \boldsymbol{e}\left(\frac{1}{2} t\left(r+z^{-1} k+z^{-1} x\right) z\left(r+z^{-1} k+z^{-1} x\right)\right) \\
& =\boldsymbol{e}\left(\frac{1}{2} t\left(x+k^{\prime \prime}\right) z^{-1}\left(x+k^{\prime \prime}\right)\right) \vartheta \vartheta\left[\begin{array}{l}
k^{\prime} \\
k^{\prime \prime}
\end{array}\right](z \mid x) \\
& =\boldsymbol{e}\left(\frac{1}{2} t(k+x) z^{-1}(k+x)\right) \vartheta\left[\begin{array}{l}
0 \\
0
\end{array}\right](z \mid k+x) .
\end{aligned}
$$

This function actually depends only on $(z, k+x)$.
(2.1) For a fixed z, the function $\vartheta(z, k, x)$ satisfies the relation: for $q=\left(\begin{array}{ll}z & 1\end{array}\right)\binom{q^{\prime}}{q^{\prime \prime}}=\left(\begin{array}{ll}z^{t} e^{-1} & 1\end{array}\right)\binom{q_{0}^{\prime}}{q_{0}^{\prime \prime}}, q^{\prime}={ }^{t} e^{-1} q_{0}^{\prime} \in{ }^{t} e^{-1} \boldsymbol{Z}^{n}\left(\right.$ or, $\left.q_{0}^{\prime} \in \boldsymbol{Z}^{n}\right), q^{\prime \prime}=q_{0}^{\prime \prime} \in \boldsymbol{Z}^{n}$, and $s=\left(\begin{array}{ll}z & 1\end{array}\right)\binom{s^{\prime}}{s^{\prime \prime}}=\left(\begin{array}{ll}z & e\end{array}\right)\binom{s_{0}^{\prime}}{s_{0}^{\prime \prime}}, s^{\prime}=s_{0}^{\prime} \in \boldsymbol{Z}^{n}, s^{\prime \prime}=e s_{0}^{\prime \prime} \in e Z^{n}\left(\right.$ or, $\left.s_{0}^{\prime \prime} \in \boldsymbol{Z}^{n}\right)$
$\vartheta(z, k+q, x+s)$

$$
=\vartheta\left(z, k+z q^{\prime}, x\right) \boldsymbol{e}\left({ }^{t}\left(q^{\prime \prime}+s^{\prime \prime}\right) z^{-1}(k+x)+\frac{1}{2} t\left(q^{\prime \prime}+s^{\prime \prime}\right) z^{-1}\left(q^{\prime \prime}+s^{\prime \prime}\right)+{ }^{t} q^{\prime} q^{\prime \prime}\right)
$$

Proof. In fact,

$$
\begin{aligned}
\vartheta(z, k+q, x+s)= & \sum_{r \in Z^{Z}} e\left(\frac{1}{2} t\left(r+z^{-1} k+q^{\prime}+z^{-1} q^{\prime \prime}+z^{-1} x+s^{\prime}+z^{-1} s^{\prime \prime}\right)\right. \\
& \left.\times z\left(r+z^{-1} k+q^{\prime}+z^{-1} q^{\prime \prime}+z^{-1} x+s^{\prime}+z^{-1} s^{\prime \prime}\right)\right),
\end{aligned}
$$

(applying the substituion of $r+s^{\prime}$ by r, and the congruence equality ${ }^{t} s^{\prime \prime} q^{\prime} \equiv 0$ $\bmod Z$,

$$
\begin{aligned}
= & \sum_{r \in \mathbb{Z}^{n}} e\left(\frac{1}{2} t\left(r+z^{-1}\left(k+z q^{\prime}\right)+z^{-1} x\right) z\left(r+z^{-1}\left(k+z q^{\prime}\right)+z^{-1} x\right)\right. \\
& +{ }^{t}\left(q^{\prime \prime}+s^{\prime \prime}\right)\left(r+z^{-1} k+q^{\prime}+z^{-1} x\right)+\frac{1}{2} t\left(q^{\prime \prime}+s^{\prime \prime}\right) z^{-1}\left(q^{\prime \prime}+s^{\prime \prime}\right) \\
= & \vartheta\left(z, k+z q^{\prime}, x\right) \boldsymbol{e}\left({ }^{t}\left(q^{\prime \prime}+s^{\prime \prime}\right) z^{-1}(k+x)+\frac{1}{2} t\left(q^{\prime \prime}+s^{\prime \prime}\right) z^{-1}\left(q^{\prime \prime}+s^{\prime \prime}\right)+{ }^{t} q^{\prime} q^{\prime \prime}\right) .
\end{aligned}
$$

(2.2) The function $\vartheta(z, k, x)$ of $\binom{k}{x}$ is periodic with period $\binom{z Z^{n}}{z Z^{n}}$, and a theta function with respect to the period matrix $\left(\begin{array}{cccc}z & 1_{n} & 0 & 0 \\ 0 & 0 & z & 1_{n}\end{array}\right)$.

For $q=z q^{\prime}+q^{\prime \prime}$ and $s=z s^{\prime}+s^{\prime \prime}$ with $q^{\prime}, q^{\prime \prime}, s^{\prime}, s^{\prime \prime} \in \boldsymbol{Z}^{n}$, we have

$$
\begin{aligned}
\vartheta(z, k+q, x+s) & =\vartheta(z, k, x) \boldsymbol{e}\left({ }^{t}\left(q^{\prime \prime}+s^{\prime \prime}\right) z^{-1}(k+x)+\frac{1}{2}{ }^{t}\left(q^{\prime \prime}+s^{\prime \prime}\right) z^{-1}\left(q^{\prime \prime}+s^{\prime \prime}\right)\right) \\
\vartheta(z, k, x+s) & =\vartheta(z, k, x) \boldsymbol{e}\left({ }^{t} s^{\prime \prime} z^{-1} x+\frac{1}{2}{ }^{t} s^{\prime \prime} z^{-1} s^{\prime \prime}+{ }^{t} k z^{-1} s^{\prime \prime}\right) \\
& =\vartheta(z, k, x) e\left({ }^{t} s^{\prime \prime} z^{-1} x+\frac{1}{2}{ }^{t} s^{\prime \prime} z^{-1} s^{\prime \prime}+I(s, k)+{ }^{t} k^{\prime \prime} z^{-1} s\right)
\end{aligned}
$$

and the similar formula for $\vartheta(z, k+q, x)$.
According to these formulas we know that for fixed z, k_{1}, k_{2}, the following three conditions for the two theta functions $\vartheta\left(z, k_{i}, x\right), i=1,2$, of x with respect to $\langle z 1\rangle$ are equivalent:
(a) $k_{1} \equiv k_{2} \bmod \langle z 1\rangle$.
(b) The two theta functions $\vartheta\left(z, k_{1}, x\right)$ and $\vartheta\left(z, k_{2}, x\right)$ coincide up to a trivial theta function factor.
(c) The two theta functions $\vartheta\left(z, k_{1}, x\right)$ and $\vartheta\left(z, k_{2}, x\right)$ are of the same type up to a factor of a trivial theta function.

The statement obtained by exchanging x and k in the above is obviously true, and we get

Proposition (2.3). The theta function $\vartheta(z, k, x)$ determines the Poincaré divisor on the product of the abelian variety $C^{n} \mid\langle z 1\rangle$ and its dual $C^{n} \mid\langle z 1\rangle$.
3. The function $\eta_{e}(z, k, x)$.

Notation. Let e be a matrix as above, let ε be the smallest positive integer such that $\varepsilon e^{-1} \in \boldsymbol{M}(n, Z)$, and let $U\left({ }^{t} e\right)$ be a complete set of representatives of ${ }^{t} e^{-1} \boldsymbol{Z}^{n} \bmod \boldsymbol{Z}^{n}$.

Definition (3.0). A holomorphic function $\eta_{e}(z, k, x)$ on $H_{n} \times \boldsymbol{C}^{n} \times \boldsymbol{C}^{n}$ is defined by

$$
\eta_{e}(z, k, x)=\sum_{p^{\prime} \in U(t e)} \vartheta\left(z, k+z p^{\prime}, x\right)\left(\vartheta\left(z, k+z p^{\prime}, 0\right)\right)^{\varepsilon-1}
$$

The function $\eta_{e}(z, k, x)$ is well-defined, that is, independent of the choice of the representatives $U\left({ }^{t} e\right)$. (See (2.2).)
(3.1) Let q and s be as in (2.1). Then

$$
\begin{aligned}
& \eta_{e}(z, k+q, x+s) \\
& =\eta_{e}(z, k, x) e\left({ }^{t}\left(\varepsilon q^{\prime \prime}+s^{\prime \prime}\right) z^{-1} k+{ }^{t}\left(q^{\prime \prime}+s^{\prime \prime}\right) z^{-1} x+\frac{\varepsilon^{t}}{2} q^{\prime \prime} z^{-1} q^{\prime \prime}+{ }^{t} q^{\prime \prime} z^{-1} s^{\prime \prime}\right. \\
& \left.+\frac{1}{2}{ }^{t} s^{\prime \prime} z^{-1} s^{\prime \prime}\right)
\end{aligned}
$$

Thus the function $\eta_{e}(z, k, x)$ is a theta function of variables (k, x) of type $\left(\left.\left(\begin{array}{cccc}z^{t} e^{-1} & 1 & 0 & 0 \\ 0 & 0 & z & e\end{array}\right) \right\rvert\, h,(B, m), f, l\right)$, that is,
the theta factor part in the above

$$
\begin{aligned}
= & \boldsymbol{e}\left(\frac{1}{2 \sqrt{-1}}\left({ }^{t}\binom{\bar{q}}{\bar{s}} h+{ }^{t}\binom{q}{s} f\right)\binom{k}{x}+\frac{1}{4 \sqrt{-1}}\left({ }^{t}\binom{\bar{q}}{\bar{s}} h+{ }^{t}\binom{q}{s} f\right)\binom{q}{s}\right. \\
& \left.+\frac{1}{2}\left(\begin{array}{c}
q^{\prime} \\
q_{\prime^{\prime \prime}}^{\prime} \\
s_{0}^{\prime} \\
s_{0}^{\prime \prime}
\end{array}\right) B\left(\begin{array}{l}
q_{0}^{\prime} \\
q_{0}^{\prime \prime} \\
s_{0}^{\prime} \\
s_{0}^{\prime \prime}
\end{array}\right)+{ }^{t} \boldsymbol{m}\left(\begin{array}{c}
q_{0}^{\prime} \\
q_{\prime \prime}^{\prime \prime} \\
s_{0}^{\prime} \\
s_{0}^{\prime \prime}
\end{array}\right)+{ }^{t} l\binom{q}{s}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& h=\left(\begin{array}{c}
\varepsilon\left(\mathscr{I}_{m} z\right)^{-1} \\
\left(\mathscr{I}_{m} z\right)^{-1} \\
\left(\mathscr{I}_{m} z\right)^{-1} \\
\left.\mathscr{I}_{m} z\right)^{-1}
\end{array}\right), \quad f=-h+2 \sqrt{-1}\left(\begin{array}{cc}
\varepsilon z^{-1} & z^{-1} \\
z^{-1} & z^{-1}
\end{array}\right), \\
& B=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\varepsilon^{t} e^{-1} & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & t^{t} e & 0
\end{array}\right), \quad \boldsymbol{m}=0 \quad \text { and } \quad l=0 .
\end{aligned}
$$

Proof. Applying the formula (2.1) to our case we have the first equality, and can directly check the other parts.
(3.2) If we put $q^{\prime}=q^{\prime \prime}=0$ in the above equality, then for $s=$ $\left(\begin{array}{ll}z & 1\end{array}\right)\binom{s^{\prime}}{s^{\prime \prime}} \in \boldsymbol{G}, s^{\prime} \in \boldsymbol{Z}^{n}, s^{\prime \prime} \in e \boldsymbol{Z}^{n}$,

$$
\begin{aligned}
\eta_{e}(z, k, x+s) & =\eta_{e}(z, k, x) e\left(\frac{1}{2} s^{\prime \prime} z^{-1} s^{\prime \prime}+{ }^{t}(k+x) z^{-1} s^{\prime \prime}\right) \\
& =\eta_{e}(z, k, x) e\left({ }^{t} s^{\prime \prime} z^{-1} x+\frac{1}{2}{ }^{t} s^{\prime \prime} z^{-1} s^{\prime \prime}+I(s, k)+{ }^{t} k^{\prime \prime} z^{-1} s\right) .
\end{aligned}
$$

In the same way, for $q=\left(\begin{array}{ll}z & 1\end{array}\right)\binom{q^{\prime}}{q^{\prime \prime}} \in \hat{\boldsymbol{G}}, q^{\prime} \in^{t} e^{-1} \boldsymbol{Z}^{n}, q^{\prime \prime} \in \boldsymbol{Z}^{n}$,

$$
\begin{aligned}
\eta_{e}(z, k+q, x) & =\eta_{e}(z, k, x) \boldsymbol{e}\left(\frac{1}{2} \varepsilon^{t} q^{\prime \prime} z^{-1} q^{\prime \prime}+{ }^{t}(\varepsilon k+x) z^{-1} q^{\prime \prime}\right) \\
& =\eta_{e}(z, k, x) \boldsymbol{e}\left(\varepsilon^{t} q^{\prime \prime} z^{-1} k+\frac{1}{2} \varepsilon^{t} q^{\prime \prime} z^{-1} q^{\prime \prime}-I(x, q)+{ }^{t} x^{\prime \prime} z^{-1} q\right)
\end{aligned}
$$

Proof. These are special cases of the formula (3.1) and we have only to remark

$$
{ }^{t} k z^{-1} s^{\prime \prime}=-{ }^{t} k^{\prime \prime} s^{\prime}+{ }^{t} k^{\prime} s^{\prime \prime}+{ }^{t} k^{\prime \prime} z^{-1} s=I(s, k)+{ }^{t} k^{\prime \prime} z^{-1} s
$$

and

$$
{ }^{t} x z^{-1} q^{\prime \prime}=-{ }^{t} x^{\prime \prime} q^{\prime}+{ }^{t} x^{\prime} q^{\prime \prime}+{ }^{t} x^{\prime \prime} z^{-1} q=-I(x, q)+{ }^{t} x^{\prime \prime} z^{-1} q
$$

For a fixed (z, k), the function $\eta_{e}(z, k, x)$ of x is a theta function with respect to $\langle z e\rangle$. The first formula in (3.2) says that if two theta functions $\eta_{e}\left(z, k_{1}, x\right)$ and $\eta_{e}\left(z, k_{2}, x\right)$ are of the same type up to a factor of a trivial theta function, then $k_{1}-k_{2} \in\left\langle z^{t} e^{-1} 1_{n}\right\rangle$, and the second formula says that if $k_{1}-k_{2} \in\left\langle z^{t} e^{-1} 1_{n}\right\rangle$, then $\eta_{e}\left(z, k_{2}, x\right)$ is the product of $\eta_{e}\left(z, k_{1}, x\right)$ and a certain trivial theta. The similar statement for the function $\eta_{e}(z, k, x)$ of k naturally holds true. Thus, we have

Theorem (3.3). For fixed z and e, the holomorphic function $\eta_{e}(z, k, x)$ of (k, x) on $C^{n} \times C^{n}$ is a theta function with respect to the lattice group $\left\langle z^{t} e^{-1} 1\right\rangle \times\langle z e\rangle$. The two abelian varieties $C^{n} /\langle z e\rangle$ and $C^{n} /\left\langle z^{t} e^{-1}-1\right\rangle$ are dual to each other, and the divisor X of $\eta_{e}(z, k, x)$ on the product of the two varieties is a corresponding Poincaré divisor.

Note (3.4). If we are just interested in theta functions with the Poincaré divisor on $C^{n} /\left\langle z^{t} e^{-1}-1\right\rangle \times C^{n} /\langle z e\rangle$, it is easily seen that the functions $\vartheta\left[\begin{array}{l}0 \\ 0\end{array}\right](z \mid k+x)$ and

$$
\xi_{e}(z, k, x)=\sum_{p^{\prime} \in U\left(t_{e}\right)} \vartheta\left[\begin{array}{c}
p^{\prime} \\
0
\end{array}\right](z \mid k+x)\left(\vartheta\left[\begin{array}{c}
p^{\prime} \\
0
\end{array}\right](z \mid k)\right)^{\varepsilon-1}
$$

stand, respectively, for the above $\vartheta(z, k, x)$ and $\eta_{e}(z, k, x)$.

References

[1] S. Koizumi: Theta Functions. Kinokuniya, Tokyo (1982) (in Japanese); (English Edition, to appear).
[2] D. Mumford: Abelian Varieties. Oxford Univ. Press (1970).
[3] A. Weil: Introduction à l'étude des variétés Kählériennes, Hermann, Paris (1958).

