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Department of Mathematics, Rikkyo University

(Communicated by Shokichi IYANAGA, M. J. A., June 13, 1989)

In this note, we report our recent result on the rational points of cer-
tain elliptic curves over rational unction field. We have a complete deter-
mination of the Mordell-Weil group, and we also study the E-lattice and
the algebraic number fields arising naturally rom this situation. For the
computational purpose, we used "Mathematics" by S. Wolfram, run on
Mac-SE. Details and more general accounts will appear elsewhere.

1. The main result. We consider the elliptic curve

Er" y=x +x+ t ( e Q, =O)
over (t), t being a variable over {, the algebraic closure of the rational
number field Q. Let Er((t)) denote the Mordell-Weil group of the (t)-
rational points of Er. It is a torsion-free abelian group o rnk 8, and the
height pairing defines a structure of "E-lattice", i.e. the (unique)lattice
of rank 8 having a negative-definite even unimodular form.

The main result is the following"

Theorem 1. There is a natural isomorphism

( 7" ,l/oEr(Q (t)) Z [20] \-]
which is compatible with the action of the Galois group Gal (/Q(y)). Here
20=e2/2, and G is a fixed element of Q(2o)"

G (- 11261+ 6745/5 )/8+(-1275+ 1365/-/2)/(5+ /5 )/2.
2. Some consequences. Let Kr be the smallest extension of Q such

that all (t)-rational points of Er are defined over Kr(t). Then

Kr Q(0)((r/ G)/)
and it is a Galois extension of degree at most 160 over Q(’) or instance,
for ’= 1, Kr is a non-abelian extension of degree 160 over Q.

Here are some consequences of Theorem 1.
(1) The Galois representation p of Gal (Kr/Q) on the E-lattice Er(Q(t))

is equivalent to the subspace Q(0)" 0"/G)/ of Kr, which is a unique irre-

ducible representation of degree 8 of this Galois group when [Kr" Q] 160
(r e ).

The Artin L-function attached to p turns out to be the Hecke L-func-
tion o the cyclotomic field Q(0) with the character belonging to the
cyclic extension Kr o Q(0)"

L(s, p, Kr Q) L(s, q, Kr Q(20)).
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(2) Let S be the elliptic surface over P’ associated with E it is
nonsingular rational surface defined over Q i 7 e Q. The Hasse zeta func-
tion of this surface is equal to

(s) (s- 1) (s- 2) L(s- 1, p)
(possibly up to the Euler factor for p=2, 5), where (s) is the Riemann
zeta function. The L-function is also related to certain Jacobi sums (cf.
[6], [4]). Compare Weil’s remark in [7, p. 558].

(3) Changing the viewpoint, Theorem 1 allows one to realize the E-
lattice in a number field like Kr. For example, if we take 7=G, then the
structure of E-lattice on Z[0], transported from Er(Q(t)), is given as
follows. For In--mllO, we have

<{,>=--2,1,0 or --1
according as n=m, ln--ml=l (mod3), -----2 (mod3) or n=/:m and n--m
(rood 3) (c. [1, Ch. 8]).

:3. Sketch ot the proof of Theorem 1. First we find some rational
points P=(x, y) of E of the form"
( * ) x gt + at/ b, y ht / ct / dt/ e,
where a, b, ., g, h e @, g. h:/:0.

Proposition 2. There are exactly 240 rational points of the form (*),
and they are given as follows. There are 12 absolute constants G e Q({o)
(1<=]<12) with G,=G such that for each 20-th root of G/7, say , there
exists a unique point P of the form (*) with g= and h=.

Second, we consider the rational elliptic surface =" SrP associated
with E. It has 10 singular fibres of type I, at t :/= oo and a singular fibre
ot type II at t=c (cf. [2], [5], [4, 5]). Since there are no reducible
fibres, the Mordell-Weil group is o rank 8 and the height pairing <P, P>
on that group is defined by the intersection number of the divisors (P)-(0)
and (P’)-(0), where (P) denotes the divisor o the section of correspond-
ing to P and (0) is that of the 0-section (c. [3], 1]).

The 240 points P correspond to the minimal vectors in the E-lattice.
Proposition 21. Let P (1<=n_<__20) be the point P for ]=1 and =;o’o where o is a fixed 20-th root of G/7. Then

det (<P, P})_<.,_<s= 1.
Hence P, ., P are independent and generate the full Mordell-Weil group
E(Q(t)).

Third, we look at the singular fibre at t=o, o type II (a rational
curve with a cusp). Its smooth part is the additive group with the group
parameter tx/y. The specialization t--,oo induces a group homomorphism

sp" E(Q(t)) >Q
which is compatible with the Galois action. Then we see easily

sp(P) o .
It follows that the map sp gives an isomorphism of E(Q(t)) onto Z[0];,
which proves Theorem 1.
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