51. A Note on a Recent Paper on Iwasawa on the Capitulation Problem

By R. W. K. Odoni
Department of Mathematics, University of Exeter
(Communicated by Shokichi Ifanaga, m. J. a., June 13, 1989)

Introduction. Let $n \geq 1$ and let p_{1}, \cdots, p_{n} be distinct primes in $N=\{z \in Z ; z>0\}$, each congruent to $1(\bmod 4)$. Let K_{n} be the quadratic field $\boldsymbol{Q}\left(\sqrt{p_{1} \cdots p_{n}}\right)$, and let \mathcal{O}_{n} be the ring of algebraic integers in K_{n}. It is a famous unsolved problem to give simple conditions on p_{1}, \cdots, p_{n} which are necessary and sufficient to ensure that $N_{n}(\varepsilon)=+1$ for every unit ε of \mathcal{O}_{n}. (Here N_{n} is the K_{n} / Q-norm.) Legendre in 1785 showed [3] that if $n=1$ there is always an ε in \mathcal{O}_{1} with $N_{1}(\varepsilon)=-1$. However, for $n>1$, the present state of knowledge is still unsatisfactory. The aim of this note is to give a simple proof of

Theorem 1. Let $n \geq 2$ be fixed, and let p_{1}, \cdots, p_{n-1} be such that the Legendre symbol $\left(p_{j} / p_{k}\right)$ equals +1 whenever $j \neq k$ and $j, k \leq n-1$. Then there are infinitely many choices of p_{n} such that $N_{n}(\varepsilon)=+1$ for every unit ε of \mathcal{O}_{n}.

Theorem 1 answers a generalisation of a question raised by K. Iwasawa in a recent paper [2] on the capitulation problem. Theorem 1 is not a new result; the case $n=2$ occurs in work of A. Scholz [6], while the general case is implicit in work of L. Rédei [5], although his proof is very complicated. We should perhaps remark that the long series of papers Rédei over the years 1932-53 still contains almost all the significant known results on the signs of the $N_{n}(\varepsilon)$ (see [5] and the bibliography (and Chapter III) of [4]). The reader is warned that there is a serious error in the "analytical" part of [5], which the author hopes to correct in a forthcoming paper. Our proof of Theorem 1 is quite simple, relying only on standard properties of biquadratic residues in $Z[i](i=\sqrt{-1})$. For these we refer the reader to the excellent book of K. Ireland and M. Rosen [1]; all results which we state without proof are contained in the text and exercises of Chapter 9 of their book.

1. A necessary condition for $N_{n}(\varepsilon)=-1$. We retain the notation of the introduction. A number λ in $R=Z[i]$ is called primary if $\lambda \equiv 1$ $\left(\bmod (1+i)^{3}\right)$. If $p \in N$ is prime and $p \equiv 1(\bmod 4)$ we have $p=\pi \bar{\pi}$, where π is primary and irreducible, while π is the complex conjugate of π. If also σ is primary irreducible and $p=\sigma \bar{\sigma}$, then $\sigma=\pi$ or $\bar{\pi}$.

If π is primary irreducible and $\alpha \in R, \pi \nmid \alpha$, the biquadratic residue symbol $(\alpha / \pi)_{4}$ is defined to be the unique power of $i=\sqrt{-1}$ such that $(\alpha / \pi)_{4} \equiv \alpha^{(p-1) / 4}(\bmod \pi)$, where $p=\pi \bar{\pi}$ is prime in $N, p \equiv 1(\bmod 4)$.

If $\lambda, \mu \in R$ we write $\lambda \sim \mu$ if and only if $\lambda^{4}=1=\mu^{4}$ and $\lambda^{2}=\mu^{2}$.
Now let p_{1}, \cdots, p_{n} be as in the introduction. We choose fixed primary irreducible π_{j} in R such that $p_{j}=\pi_{j} \pi_{j}(1 \leq j \leq n)$.

Now let \mathcal{C}_{n} be the set of all ordered n-tuples $\underline{c}=(c(1), \cdots, c(n))$, where each $c(j)=0$ or 1 in Z; we denote by \underline{o} the n-tuple \underline{c} where each $c(j)=0$.

Finally, let $\underline{c} \in \mathcal{C}_{n}, k \leq n$. We define

$$
\begin{equation*}
U(n, k, \underline{c})=\prod_{k \neq j \leq n}\left(\pi_{j}^{1-c(j)} \pi_{j}^{\tau_{j}^{(j)}} / \pi_{k}^{c(k)} \bar{\pi}_{k}^{1-c(k)}\right)_{4} . \tag{1.1}
\end{equation*}
$$

We now prove two simple lemmas.
Lemma 1.1. Let $n \geq 1$, and suppose that $N_{n}(\varepsilon)=-1$ for some ε in \mathcal{O}_{n}. Then, for at least one $\underline{c} \in \mathcal{C}_{n}$, we have $U(n, k, \underline{c}) \sim 1$ for all $k \leq n$.

Proof. Let $\varepsilon \in \mathcal{O}_{n}$ be a unit. Then it is easily seen that $\varepsilon^{3} \in Z\left[\sqrt{p_{1} \cdots p_{n}}\right]$, $\varepsilon^{3}=z+y \sqrt{p_{1} \cdots p_{n}}$ with $z, y \in Z$. Suppose that $N_{n}(\varepsilon)=-1$. Then

$$
\begin{equation*}
N_{n}\left(\varepsilon^{3}\right)=-1=z^{2}-\left(p_{1} \cdots p_{n}\right) y^{2} \tag{1.2}
\end{equation*}
$$

By reduction $(\bmod 4)$ we see that $y \in 1+2 Z$ and $z=2 x, x \in Z$, while $4 x^{2}+1=\left(p_{1} \cdots p_{n}\right) y^{2}>1$. Hence $x^{2}>0$ and, without loss of generality, $x, y \in N$. Moreover, $(2 x)^{2} \equiv-1(\bmod y)$, so that every prime factor q of y in N satisfies $q \equiv 1(\bmod 4)$. (Possibly $y=1$.) Thus, for some $m \geq 0$, we have $y=\prod_{s=1}^{m} q_{s}^{e_{s}}$, where the q_{s} are distinct primes $\equiv 1(\bmod 4)$ and the $e_{s} \geq 1(s \leq m)$. We now work in $R=Z[i],(i=\sqrt{-1})$. We have $q_{3}=\rho_{s} \bar{\rho}_{s}, \rho_{s}$ primary irreducible in R, while

$$
\begin{equation*}
4 x^{2}+1=(2 x+i)(2 x-1)=\prod_{j=1}^{n} \pi_{j} \bar{\pi}_{j} \prod_{s=1}^{m}\left(\rho_{s} \bar{\rho}_{s}\right)^{2 e_{s}} \tag{1.3}
\end{equation*}
$$

Now, in R, the ideal ($2 x+i, 2 x-i$) contains $2 i$, hence also 2 , hence also i, and so $(2 x+i, 2 x-i)=R$. Thus, $2 x+i$ and $2 x-i$ have no common irreducible factor in R, while neither is divisible by $(1+i)$. From this and (1.3) we see that, for some $\underline{c} \in \mathcal{C}_{n}$, we have $2 x+i=i^{\alpha} \mu, 2 x-i=i^{-a} \bar{\mu}$, where

$$
\begin{equation*}
\mu=\prod_{j=1}^{n} \pi_{j}^{c(j)} \bar{\pi}_{j}^{1-c(j)} \prod_{s=1}^{m} \sigma_{s}^{2 e_{s}} ; \tag{1.4}
\end{equation*}
$$

here $\sigma_{s} \in\left\{\rho_{s}, \bar{\rho}_{s}\right\}$, and $a \in Z$, while $\mu R+\bar{\mu} R=R$ and μ is primary. From this we have $2 i=i^{a} \mu-i^{-a} \bar{\mu}$, from which, on reduction $\left(\bmod (1+i)^{3}\right)$, we see that a is odd, and

$$
\begin{equation*}
\pm 2=\mu+\mu \tag{1.5}
\end{equation*}
$$

Now let $k \leq n$. We reduce (1.5) $\left(\bmod \left(\pi_{k}^{c(k)} \bar{\pi}_{k}^{1-c(k)}\right)\right)$, obtaining

$$
\begin{equation*}
\left(\pm 2 / \pi_{k}^{c(k)} \bar{\pi}_{k}^{1-c(k)}\right)_{4} \sim \prod_{j \leq n}\left(\pi_{j}^{1-c(j)} \bar{\pi}_{j}^{c(j)} / \pi_{k}^{c(k)} \bar{\pi}_{k}^{1-c(k)}\right)_{4} . \tag{1.6}
\end{equation*}
$$

However, $\left(-1 / \pi_{k}\right)_{4} \sim 1 \sim\left(-1 / \bar{\pi}_{k}\right)_{4}$ and $\left(2 / \pi_{k}\right)_{4} \sim\left(\bar{\pi}_{k} / \pi_{k}\right)_{4} \sim\left(\pi_{k} / \pi_{k}\right)_{4} \sim\left(2 / \bar{\pi}_{k}\right)_{4}$, from which Lemma 1.1 follows.

Lemma 1.2. Let $n \geq 1$, and suppose that each Legendre symbol $\left(p_{j} / p_{k}\right)$ equals +1 , for $j \neq k, j, k \leq n$. Then for all $\underline{c} \in \mathcal{C}_{n}, k \leq n$, we have $U(n, k, \underline{c}) \sim U(n, k, \underline{o})$, where \underline{o} is the zero vector in \mathcal{C}_{n}.

Proof. Let $j \leq n, j \neq k$. We have $\left(\pi_{j} / \pi_{k}\right)_{4}\left(\tilde{\pi}_{j} / \pi_{k}\right)_{4}=\left(p_{j} / \pi_{k}\right)_{4}$, while $p_{j}^{\left(p_{k}-1\right) / 2} \equiv 1\left(\bmod \left(\pi_{k},\left(\right.\right.\right.$ resp. $\left.\left.\bar{\pi}_{k}\right)\right)$. Hence $\left(\pi_{j} / \pi_{k}\right)_{4} \sim\left(\bar{\pi}_{j} / \pi_{k}\right)_{4} \sim\left(\pi_{j} / \bar{\pi}_{k}\right)_{4} \sim\left(\bar{\pi}_{j} / \bar{\pi}_{k}\right)_{4} ;$ Lemma 1.2 follows immediately from these relations.
2. Proof of Theorem 1. Now let $n \geq 2$. We assume that p_{1}, \cdots, p_{n-1} have been chosen such that the Legendre symbol $\left(p_{j} / p_{k}\right)$ equals +1 whenever $j, k \leq n-1$ and $j \neq k$. If $\underline{c} \in \mathcal{C}_{n}$ we denote by $\underline{\hat{c}}$ the vector $(c(1), \cdots, c(n-1)) \in \mathcal{C}_{n-1}$. Now let p_{n} be distinct from p_{1}, \cdots, p_{n-1}. Then, for every $\underline{c} \in \mathcal{C}_{n}$ and $k<n$ we have
(2.1)

$$
U(n, k, \underline{c})=\left(\pi_{n}^{1-c(n)} \bar{\pi}_{n}^{c(n)} / \pi_{k}^{c(k)} \bar{\pi}_{k}^{1-c(k)}\right)_{4} U(n-1, k, \underline{\hat{c}}),
$$

while $U(n-1, k, \underline{\hat{c}}) \sim U(n-1, k, \underline{\hat{o}})$ by Lemma 2.2 . We shall choose p_{n} by specifying π_{n} in terms of congruences $\left(\bmod \pi_{k}\right)$ and $\left(\bmod \pi_{k}\right)$ for the $k<n$. We impose on π_{n} the conditions

$$
\left.\begin{array}{l}
\left(\pi_{n} / \pi_{1}\right)_{4} \sim\left(\pi_{n} / \pi_{1}\right)_{4} \sim i U(n-1,1, \underline{\hat{o}}), \tag{2.2}\\
\left(\pi_{n} / \pi_{k}\right)_{4} \sim\left(\pi_{n} / \pi_{k}\right)_{4} \quad \text { when } \quad 1<k<n .
\end{array}\right\}
$$

Clearly there are infinitely irreducible π_{n} in R which satisfy (2.2), since there are infinitely many prime ideals of R of residual degree 1 in every ray-class (to any modulus). Suppose now that (2.2) is satisfied. Then certainly $\left(p_{n} / p_{k}\right)=+1$ for all $k<n$. Hence, by Lemma 2.2, we have $U(n, k, \underline{c}) \sim U(n, k, \underline{o})$ for all $\underline{c} \in \mathcal{C}_{n}$ and all $k \leq n$. However, by (2.2) and (2.1), we have $U(n, 1, \underline{o}) \sim i$. Thus, by Lemma 1.1 , we have $N_{n}(\varepsilon)=+1$ for every unit in \mathcal{O}_{n}, and we have proved Theorem 1.

References

[1] K. Ireland and M. Rosen: A Classical Introduction to Modern Number Theory. 2nd ed., Springer-Verlag, New York (1982).
[2] K. Iwasawa: A note on the capitulation problem for number fields. Proc. Japan Acad., 65A, 59-61 (1989).
[3] T. Nagell: Introduction to Number Theory. Almqvist \& Wiksell, Stockholm (esp. p. 203) (1951).
[4] W. Narkiewicz: Elementary and Analytic Theory of Algebraic Numbers. PWN, Warszawa (1974).
[5] L. Rédei: Über einige Mittelwertfragen im quadratischen Zahlkörper. J. Reine Angew. Math., 174, 15-55 (1935).
[6] A. Scholz: Über die Lösbarkeit der Gleichung $t^{2}-D u^{2}=-4$. Math. Z., 39, 95-111 (1935).

