6. On the Inequalities of Erdös-Turán and Berry-Esseen. II

By Petko D. Proinov
Department of Mathematics, University of Plovdiv, Bulgaria (Communicated by Shokichi Iyanaga, m. J. A., Jan. 12, 1989)

This is continued from [1].
5. The ideas of the proofs of the results given in Sections 3 and 4 are similar. Here we shall prove only Theorem 1. The proof is based on some ideas of Sendov [3] and the author [2]. We begin with a well known lemma of Sendov, which he used in the approximation theory.

Lemma 1 ([3], [4]). Let f be a periodic function with period 1, and let μ be its modulus of nonmonotonicity (on \boldsymbol{R}). Suppose also that $x \in \boldsymbol{R}$ and $\delta \geqq 0$. Then:
(a) The inequality $f(t) \leqq f(x)+\mu(2 \delta)$ holds either for all $t \in[x, x+\delta]$, or for all $t \in[x-\delta, x]$.
(b) The inequality $f(t) \geqq f(x)-\mu(2 \delta)$ holds either for all $t \in[x, x+\delta]$, or for all $t \in[x-\delta, x]$.

In what follows, a periodic function K with period 1 is said to be a kernel if it is nonnegative, even and $\int_{0}^{1} K(t) d t=1$.

Lemma 2. Let f be as in Theorem 1, and let μ be its modulus of nonmonotonicity. Suppose also that K is a kernel, and set

$$
\mathcal{K}(f ; x)=\int_{0}^{1} f(t) K(t-x) d t \quad \text { for all } x \in \boldsymbol{R} .
$$

Then:
(i) For every $\delta \in[0,1 / 2]$,

$$
\|f\| \leqq \mu(4 \delta)+\|\mathcal{K}(f, \cdot)\|+2(2\|f\|-\mu(4 \delta)) \int_{\delta}^{1 / 2} K(t) d t
$$

(ii) For every $\delta \geqq 1 / 2$,

$$
\|f\| \leqq \mu(4 \delta)+\|\mathcal{K}(f ; \cdot)\| \cdot
$$

Proof. (i) Let $\delta \in[0,1 / 2]$ and $x \in \boldsymbol{R}$. First we shall prove that

$$
\begin{equation*}
|f(x)| \int_{-\delta}^{\delta} K(t) d t \leqq \mu(4 \delta) \int_{-\delta}^{\delta} K(t) d t+2\|f\| \int_{\delta}^{1 / 2} K(t) d t+\|\mathcal{K}(f ; \cdot)\| \tag{1}
\end{equation*}
$$

According to Lemma 1-(a) the inequality

$$
\begin{equation*}
f(t) \leqq f(x)+\mu(4 \delta) \tag{2}
\end{equation*}
$$

holds either for all $t \in[x, x+2 \delta]$, or for all $t \in[x-2 \delta, x]$.
Suppose first that (2) holds for all $t \in[x, x+2 \delta]$. In this case we shall obtain an upper bound for the value of $\mathcal{K}(f ; x+\delta)$. We have

$$
\begin{equation*}
\mathcal{K}(f ; x+\delta)=\int_{-1 / 2}^{1 / 2} f(t+x+\delta) K(t) d t \tag{3}
\end{equation*}
$$

since f is a periodic function with period 1 . Now we write $\mathcal{K}(f ; x+\delta)$ in the form

$$
\begin{align*}
\mathcal{K}(f ; x+\delta) & =\int_{-\delta}^{\delta} f(t+x+\delta) K(t) d t+\left(\int_{-1 / 2}^{-\delta}+\int_{\delta}^{1 / 2}\right) f(t+x+\delta) K(t) d t \tag{4}\\
& =I_{1}+I_{2}
\end{align*}
$$

where the meanings of I_{1} and I_{2} are clear.
Note that if $t \in[-\delta, \delta]$, then

$$
x \leqq t+x+\delta \leqq x+2 \delta
$$

Hence, from (2) we conclude that
(5)

$$
f(t+x+\delta) \leqq f(x)+\mu(4 \delta)
$$

for these values of t. From the last inequality, we get

$$
\begin{equation*}
I_{1} \leqq(f(x)+\mu(4 \delta)) \int_{-\delta}^{\delta} K(t) d t \tag{6}
\end{equation*}
$$

On the other hand, it is easy to see that

$$
\begin{equation*}
I_{2} \leqq 2\|f\| \int_{\delta}^{1 / 2} K(t) d t \tag{7}
\end{equation*}
$$

since $\delta \in[0,1 / 2]$. Combining (4), (6) and (7), we obtain

$$
\begin{equation*}
\mathcal{K}(f ; x+\delta) \leqq(f(x)+\mu(4 \delta)) \int_{-\delta}^{\delta} K(t) d t+2\|f\| \int_{\delta}^{1 / 2} K(t) d t, \tag{8}
\end{equation*}
$$

which implies

$$
\begin{equation*}
-f(x) \int_{-\delta}^{\delta} K(t) d t \leqq \mu(4 \delta) \int_{-\delta}^{\delta} K(t) d t+2\|f\| \int_{\delta}^{1 / 2} K(t) d t+\|\mathcal{K}(f ; \cdot)\| . \tag{9}
\end{equation*}
$$

Now suppose that (5) holds for all $t \in[x-2 \delta, x]$. Then using the same method as in the first alternative we can show the validity of (8) but with $\mathcal{K}(f ; x-\delta)$ in place of $\mathcal{K}(f ; x+\delta)$, from which we again arrive at (9).

Further, using Lemma 1-(b) and repeating all the above arguments we can obtain (9) but with $f(x) \int_{-\delta}^{\delta} K(t) d t$ in the left-hand side. Thus the inequality (1) is proved.

Since x is an arbitrary real number, we can replace $f(x)$ in (1) with $\|f\|$. Then the new inequality can be written in the form

$$
\left(1-2 \int_{\delta}^{1 / 2} K(t) d t\right)\|f\| \leqq\left(1-2 \int_{\delta}^{1 / 2} K(t) d t\right) \mu(4 \delta)+2\|f\| \int_{\delta}^{1 / 2} K(t) d t+\|\mathcal{K}(f ; \cdot)\|
$$ which implies the desired inequality in case of $\delta \in[0,1 / 2]$.

(ii) Now let $\delta \geqq 1 / 2$ and $x \in R$. To prove the desired inequality it is sufficient to show that

$$
\begin{equation*}
|f(x)| \leqq \mu(4 \delta)+\|\mathcal{K}(f ; \cdot)\| . \tag{10}
\end{equation*}
$$

Let us consider again the inequality (2). Suppose first that it holds for all $t \in[x, x+2 \delta]$. Now note that if $t \in[-1 / 2,1 / 2]$ then $t \in[-\delta, \delta]$, and so (5) holds for $t \in[-1 / 2,1 / 2]$. From (5) and (3), we deduce

$$
\mathcal{K}(f ; x+\delta) \leqq(f(x)+\mu(4 \delta)) \int_{-1 / 2}^{1 / 2} K(t) d t=f(x)+\mu(4 \delta),
$$

which implies the inequality

$$
\begin{equation*}
-f(x) \leqq \mu(4 \delta)+\|\mathcal{K}(f ; \cdot)\| \cdot \tag{11}
\end{equation*}
$$

If (2) holds for all $t \in[x-\delta, x]$, then we estimate $\mathcal{K}(f ; x-\delta)$ and again arrive at (11).

Analogously, we can prove (11) with $f(x)$ in place of $-f(x)$, and so (10) is proved.
Q.E.D.

In what follows, for an integrable function f on $[0,1]$ and a positive integer m, we denote by $\sigma_{m}(f)$ the $m t h$ Fejér integral of f, i.e.,

$$
\sigma_{m}(f ; x)=\int_{0}^{1} f(t) \boldsymbol{F}_{m}(t-x) d t \quad \text { for all } x \in \boldsymbol{R}
$$

where

$$
F_{m}(t)=\frac{1}{m}\left(\frac{\sin \pi m t}{\sin \pi t}\right)^{2}
$$

is the m th F ejér kernel*). We note that for every $\delta \in[0,1 / 2]$,

$$
\begin{equation*}
\int_{\delta}^{1 / 2} F_{m}(t) d t \leqq \frac{1}{m} \int_{\delta}^{1 / 2} \frac{d t}{\sin ^{2} \pi t}=(\cot \pi \delta) /(\pi m)<1 /\left(\pi^{2} m \delta\right) \tag{12}
\end{equation*}
$$

Lemma 3. Let f be as in Theorem 1, and let μ be its modulus of nonmonotonicity. Then for every positive integer m and every real $a>1$, we have

$$
\begin{equation*}
\|f\| \leqq \frac{a+1}{2} \mu\left(\frac{16 a}{\pi^{2}(a-1) m}\right)+a\left\|\sigma_{m}(f ; \cdot)\right\| . \tag{13}
\end{equation*}
$$

Proof. Let $m \in N$ and $a>1$. We can suppose that

$$
\begin{equation*}
\|f\|>\frac{a+1}{2} \mu\left(\frac{16 a}{\pi^{2}(a-1) \mathrm{m}}\right) \tag{14}
\end{equation*}
$$

since otherwise there is nothing to prove. Now set

$$
\begin{equation*}
\delta=\frac{4 a}{\pi^{2}(a-1) m} . \tag{15}
\end{equation*}
$$

From (14) and (15), we conclude that

$$
\begin{equation*}
2\|f\|-\mu(4 \delta)>a \mu(4 \delta) \geqq 0 \tag{16}
\end{equation*}
$$

Suppose first that $\delta \in[0,1 / 2]$. Applying Lemma 2-(i) to the m th Fejér kernel we obtain

$$
\|f\| \leqq \mu(4 \delta)+\left\|\sigma_{m}(f ; \cdot)\right\|+2(2\|f\|-\mu(4 \delta)) \int_{\delta}^{1 / 2} F_{m}(t) d t
$$

From this, (12) and (16), we get

$$
\|f\| \leqq \mu(4 \delta)+\left\|\sigma_{m}(f ; \cdot)\right\|+2(2\|f\|-\mu(4 \delta)) /\left(\pi^{2} m \delta\right)
$$

The last inequality can be written in the form

$$
\left(1-4 /\left(\pi^{2} m \delta\right)\right)\|f\| \leqq\left(1-2 /\left(\pi^{2} m \delta\right)\right) \mu(4 \delta)+\left\|\sigma_{m}(f ; \cdot)\right\|
$$

which according to (15) coincides with

$$
\frac{1}{a}\|f\| \leqq \frac{a+1}{2 a} \mu(4 \delta)+\left\|\sigma_{m}(f ; \cdot)\right\|
$$

and so (13) is proved in case of $\delta \in[0,1 / 2]$.
Now suppose that $\delta \geqq 1 / 2$. Applying Lemma 2-(ii) to the m th Fejér kernel we get

$$
\|f\| \leqq \mu(4 \delta)+\left\|\delta_{m}(f ; \cdot)\right\| \leqq \frac{a+1}{2} \mu(4 \grave{\delta})+a\left\|\sigma_{m}(f ; \cdot)\right\|,
$$

which coincides with (13).
Q.E.D.

Lemma 4. Let f be as in Theorem 1, and let μ be its modulus of nonmonotonicity. Suppose also that $\int_{0}^{1} f(t) d t=0$. Then for every positive

[^0]integer m and every real $a>1$, we have
$$
\|f\| \leqq \frac{a+1}{2} \mu\left(\frac{16 a}{\pi^{2}(a-1) m}\right)+\frac{a}{\pi} \sum_{h=1}^{m}\left(\frac{1}{h}-\frac{1}{m}\right)|\hat{f}(h)| \cdot
$$

Proof. Let $m \in N$ and $a>1$. According to Lemma 3 it is sufficient to show that

$$
\left\|\sigma_{m}(f ; \cdot)\right\| \leqq \frac{1}{\pi} \sum_{h=1}^{m}\left(\frac{1}{h}-\frac{1}{m}\right)|\hat{f}(h)| .
$$

A proof of the last inequality is given in [2].
Q.E.D.

Proof of Theorem. Let $m \in N$ and $a>1$. It is easy to see that the function φ defined on \boldsymbol{R} by

$$
\varphi(x)=f(x)-\int_{0}^{1} f(t) d t
$$

satisfies the conditions of Lemma 4, i.e., φ is periodic with period 1 , Riemann-integrable on $[0,1]$, and $\int_{0}^{1} \varphi(t) d t=0$. Therefore, from Lemma 4 we have

$$
\|\varphi\| \leqq \frac{a+1}{2} \mu\left(\varphi ; \frac{16 a}{\pi^{2}(a-1) m}\right)+\frac{a}{\pi} \sum_{n=1}^{m}\left(\frac{1}{h}-\frac{1}{m}\right)|\hat{f}(h)| .
$$

Now taking into account that $[f]=[\varphi] \leqq 2\|\varphi\|, \mu(f ; \delta) \equiv \mu(\varphi ; \delta)$ and $\hat{f}(h)=$ $\hat{\varphi}(h)$, we get the desired inequality for the oscillation of f.
Q.E.D.

References

[1] P. D. Proinov: On the inequalities of Erdös-Turán and Berry-Esseen. I. Proc. Japan Acad., 64A, 381-384 (1988).
[2] --: On the Erdös-Turán inequality on uniform distribution. I, II. Proc. Japan Acad., 64A, 27-28, 49-52 (1988).
[3] Bl. Sendov: On some linear methods for approximation of periodic functions in Hausdorff metric. Annuaire Univ. Sofia Fac. Math., 58, 107-140 (1965) (in Bulgarian).
[4] -: Some problems of approximation theory of functions and sets in Hausdorff metric. Uspehi Mat. Nauk, 24, 147-178 (1969) (in Russian).

[^0]: *) As usual the m th Fejér kernel equals m if t is an integer.

