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This is continued rom [1].
5. The ideas of the proofs of the results given in Sections 3 and 4 are

similar. Here we shall prove only Theorem 1. The proof is based on
some ideas o Sendov [3] and the author [2]. We begin with a well known
lemma of Sendov, which he used in the approximation theory.

Lemma 1 ([3], [4]). Let f be a periodic function with period 1, and
let p be its modulus of nonmonotonicity (on R). Suppose also that x e R
and >_ O. Then

(a) The inequality f(t)=f(x)+[(28) holds either for all t e [x, x+],
or for all t e [x--, x].

(b) The inequality f(t) f(x)-p(28) holds either for all t e [x,x+],
or for all t [x--8, x].

In what follows, a periodic function K with period 1 is said to be a

kernel if it is nonnegative, even and ] K(t)dt= 1.

Lemma 2. Let f be as in Theorem 1, and let be its moduls of non-
monotonicity. Suppose also that K is a kernel, and set

(/;
d0

For every e [0, 1/2],

IfllGt(4/)+ll(f, ")11+2(211f I--/(4)) K(t)dt.

(ii) For every >=1/2,
IlYll<=Z(4)+l[/(f ")ll.

Proof. (i) Let/ e [0, 1/2] and x e R. First we shall prove that

( 1 ) [f(x)l K($)dt(43) K($)dt+2 [f[[ K(t)dt+[{(f;

According to Lemma 1-(a) the inequality

(2) f(t) f(x) +(4)
holds either for all e [x, x+23], or for all e [x--23, x].

Suppose first that (2) holds or all t e [x, x+2]. In this case we shall
obtain an upper bound or the value of (f; x+3). We have

(3) (f; x+3)
d- 1/2

since f is a periodic function with period 1. Now we write (f; x+) in

the orm

Then:
()
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(4) J/(f;x+)= -f(t+x+)K(t)dt+ _m+ f(t+x+)K(t)dt

--I+I,
where the meanings of I and I are clear.

Note that if t e [-, ], then
x<: t+ x+3<=x+2.

Hence, from (2) we conclude that
( 5 ) f(t+x+)f(x)+ g(43)
for these values of t. From the last inequality, we get

K(t)dt.( 6 ) I(f(x)+t(4)) J-
On the other hand, it is easy to see that

( 7 ) I<=2 IIf K(t)dt

since e [0, 1/2]. Combining (4), (6) and (7), we obtain

( 8 ) J(f; x+)=(f(x)+/(4)) K(t)dt+211fll K(t)dt,

which implies

9 ) --f(x) K(t)dt<=p(4) K(t)dt+211f K(t)dt/llJ(f;

Now suppose that (5) holds or all t e [x--2, x]. Then using the same
method as in the first alternative we can show the validity of (8) but with

J/(f; x--/) in place of J/(f; x+), rom which we again arrive at (9).
Further, using Lemma l-(b)and repeating all the above arguments we

obtain (9) but with y(x)[ K(t)dt in the left-hand side. Thus thecan
j-

inequality (1) is proved.
Since x is an arbitrary real number, we can replace f(x) in (1) with

f I. Then the new inequality can be written in the orm

) )1 2 K(t)dt IIfl] 1 K(t)dt z(4)+21fII K(t)dt+ (f; )],

which implies the desired inequality in case of a e [0, 1/2].
(ii) Now let a1/2 and x e R. To prove the desired inequality it is

sufficient to show that
(10) [f(x)l=g(43)+lIJ(f

Let us consider again the inequality (2). Suppose first that it holds
for all t e [x, x+28]. Now note that if t e [-1/2, 1/2] then t e [-a, a], and
so (5) holds for t e [--1/2, 1/2]. From (5) and (3), we deduce

/2

j/(f; x+3)g(f(x)+[(43)) K(t)dt=f(x)+p(4),
J- 1/2

which implies the inequality

(1) f(x)<=p(4)+llYf(f
If (2) holds or all t e [x-, x], then we estimate j/(f; x--) and again
arrive at (11).

Analogously, we can prove (11) with f(x) in place of --f(x), and so
(10) is proved. Q.E.D.
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Lemma 3.
monotonicity.
have

In what follows, for an integrable function f on [0, 1] and a positive
integer m, we denote by am(f) the ruth Fe]& integral of f, i.e.,

a(f; x)=.l" f(t)F(t--x)dt for all x e R,

where

F(t)=--I(sinmt)m sint
is the ruth Fe]dr kernel*). We note that for every e [0, 1/2],
(12) F(t)dt (cot)/(m)<1/&m6).

m sin2t
Let f be as in Theorem 1, and let [ be its modulus of non-
Then for every positive integer m and every real a> 1, we

(13) f[ -- 2
g
(a--1)m

Proof. Let m e N and a 1. We can suppose that

(14) ilfll>a+l ( 16a )2 t (a--1)m
since otherwise there is nothing o prove. Now set

(15) 8= 4a
(a- 1)m

From (14) and (15), we conclude that
(16) 2 f []- p(4) a(4) 0.

Suppose first that [0, 1/2]. Applying Lemma 2-(i) to the ruth Fejr
kernel we obtain

1/2]]fl]<(4g)+l[a(f .) +2(2 If ]--g(4)) F(t)dt.

From this, (12) and (16), we get
f[[g(43)+]a(f; .) +2(2]f --(4))/(m6).

The last inequality can be written in the orm
( 4 (=m)) f ( 2 (m)) (4) + (f ],

which according to (15) coincides with

]lfl]a+l Z(4g)+l]a(f .)
a 2a

and so (13) is proved in case o e [0, 1/2].
Now suppose that g1/2. Applying Lemma 2-(ii) t the mth Fejr

kernel we get

2
Z(43)+a]]a(f; ")

which coincides with (13). Q.E.D.
Lemma 4. Let f be as in Theorem 1, and let be its moduhts of non-

 onoton c t . i  (t)at=O. vvry positive
do

*) As usual the ruth Fejr kernel equals m if is an integer.
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integer m and every real a 1, we have

) o
2 / 2(a 1)m +----

7 k--1 h m
Let m e N and a 1. According to Lemma 3 it is sucient toPToof

show that

( 1
7 h=l h

A proo of the last inequality is given in [2].
Proof of Theorem. Let m e N and al.

function ? defined on R by

(x)--f(x)--: f(t)dt

Q.E.D.
It is easy to see that the

satisfies the conditions of Lemma 4, i.e., is periodic with period 1,
Riemann-integrable on [0, 1], and |i (t)dt=O. Therefore, from Lemma 4

we have

2 -/ 9; =(a--1)m _-1 h m
Now taking into account that [f]-[]--<_211[I, p(f; 3)----/(; ) and f(h)=
(h), we get the desired inequality or the oscillation of f. Q.E.D.
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