48. Zonal Spherical Functions on the Quantum Homogeneous Space $\mathrm{SU}_{q}(n+1) / \mathrm{SU}_{q}(n)$

By Masatoshi Noumi,*) Hirofumi Yamada,**) and Katsuhisa Mimachi***)
(Communicated by Shokichi Iyanaga, m. J. A., June 13, 1989)

In this note, we give an explicit expression to the zonal spherical functions on the quantum homogeneous space $S U_{q}(n+1) / S U_{q}(n)$. Details of the following arguments as well as the representation theory of the quantum group $S U_{q}(n+1)$ will be presented in our forthcoming paper [3]. Throughout this note, we fix a non-zero real number q.

1. Following [4], we first make a brief review on the definition of the quantum groups $S L_{q}(n+1 ; C)$ and its real form $S U_{q}(n+1)$.

The coordinate ring $A\left(S L_{q}(n+1 ; C)\right)$ of $S L_{q}(n+1 ; C)$ is the C-algebra $A=\boldsymbol{C}\left[x_{i j} ; 0 \leq i, j \leq n\right]$ defined by the "canonical generators" $x_{i j}(0 \leq i, j \leq n)$ and the following fundamental relations:

$$
\begin{equation*}
x_{i k} x_{j k}=q x_{j k} x_{i k}, \quad x_{k i} x_{k j}=q x_{k j} x_{k i} \tag{1.1}
\end{equation*}
$$

for $0 \leq i<j \leq n, 0 \leq k \leq n$,
(1.2) $\quad x_{i l} x_{j k}=x_{j k} x_{i l}, \quad x_{i k} x_{j l}-q x_{i l} x_{j k}=x_{j l} x_{i k}-q^{-1} x_{j k} x_{i l}$
for $0 \leq i<j \leq n, 0 \leq k<l \leq n$ and
(1.3)

$$
\operatorname{det}_{q}=1 .
$$

The symbol det_{q} stands for the quantum determinant

$$
\begin{equation*}
\operatorname{det}_{q}=\sum_{\sigma \in S_{n+1}}(-q)^{2(\sigma)} x_{0 \sigma(0)} x_{1 \sigma(1)} \cdots x_{n \sigma(n)} \tag{1.4}
\end{equation*}
$$

where S_{n+1} is the permutation group of the set $\{0,1, \cdots, n\}$ and, for each $\sigma \in S_{n+1}, l(\sigma)$ denotes the number of pairs (i, j) with $0 \leq i<j \leq n$ and $\sigma(i)>$ $\sigma(j)$. This algebra A has the structure of a Hopf algebra, endowed with the coproduct $\Delta: A \rightarrow A \otimes A$ and the counit $\varepsilon: A \rightarrow C$ satisfying

$$
\begin{equation*}
\Delta\left(x_{i j}\right)=\sum_{k=0}^{n} x_{i k} \otimes x_{k j} \quad \text { and } \quad \varepsilon\left(x_{i j}\right)=\delta_{i j} \quad \text { for } 0 \leq i, j \leq n . \tag{1.5}
\end{equation*}
$$

Moreover, there exists a unique conjugate linear anti-homomorphism $a \mapsto a^{*}: A \rightarrow A$ such that
(1.6) $\quad x_{j i}^{*}=S\left(x_{i j}\right) \quad$ for $0 \leq i, j \leq n$
with respect to the antipode $S: A \rightarrow A$ of A. Together with this *-operation, the Hopf algebra $A=A\left(S L_{q}(n+1 ; C)\right)$ defines the ${ }^{*}$-Hopf algebra $A\left(S U_{q}(n+1)\right)$.

In what follows, we denote by G the quantum group $S U_{q}(n+1)$ and by K the quantum subgroup $S U_{q}(n)$ of $G=S U_{q}(n+1)$. Denote by $y_{i j}(0 \leq i$,

[^0]$j \leq n$) the canonical generators for the coordinate ring $A(K)$. Embedding of K into G is then specialized by the C-algebra epimorphism $\pi_{k}: A(G) \rightarrow$ $A(K)$ such that
\[

$$
\begin{equation*}
\pi_{K}\left(x_{i j}\right)=y_{i j}, \quad \pi_{K}\left(x_{n n}\right)=1 \quad \text { and } \quad \pi_{K}\left(x_{i n}\right)=\pi_{K}\left(x_{n_{j}}\right)=0 \tag{1.7}
\end{equation*}
$$

\]

for $0 \leq i, j<n$.
2. For a given dominant integral weight $\Lambda=\lambda_{0} \varepsilon_{0}+\cdots+\lambda_{n-1} \varepsilon_{n-1}\left(\lambda_{0} \geq\right.$ $\cdots \geq \lambda_{n-1} \geq 0$), there exists a unique irreducible right $A(G)$-comodule V_{A} with highest weight Λ. We denote by Λ_{k} the fundamental weight $\varepsilon_{0}+\ldots$ $+\varepsilon_{k-1}$ for $1 \leq k \leq n$. As a representation of $K=S U_{q}(n), V_{A}$ can be decomposed into irreducible components. It turns out that V_{A} has a trivial representation of K as an irreducible component if and only if the highest weight Λ is of the form $\Lambda=l \Lambda_{1}+m \Lambda_{n}$ for some $l, m \in N$ and that the trivial representation may appear with multiplicity one. Such a representation V_{A} is said to be of class 1 relative to K.

If V_{A} is of class 1 , it can be decomposed into the form

$$
\begin{equation*}
V_{A}=\boldsymbol{C} v_{0} \oplus V_{A}^{\prime} \tag{2.1}
\end{equation*}
$$

as an $A(K)$-comodule, where v_{0} is a K-fixed vector of V_{A}. Let $\left\{v_{1}, \cdots, v_{N-1}\right\}$ be a C-basis for $V_{A}^{\prime}\left(N=\operatorname{dim}_{C} V_{A}\right)$ and define the matrix elements $w_{i j}$ of the representation V_{A} by

$$
\begin{equation*}
R_{G}\left(v_{j}\right)=\sum_{i=0}^{N-1} v_{i} \otimes w_{i j} \quad \text { for } 0 \leq j<N \tag{2.2}
\end{equation*}
$$

Here $R_{G}: V_{A} \rightarrow V_{A} \otimes A(G)$ is the structure mapping of the right $A(G)$ comodule V_{A}. Then the matrix element w_{00} does not depend on the choice of v_{0}, \cdots, v_{N-1} and is bi-K-invariant in the sense that

$$
\begin{equation*}
R_{K}\left(w_{00}\right)=w_{00} \otimes 1 \quad \text { and } \quad L_{K}\left(w_{00}\right)=1 \otimes w_{00}, \tag{2.3}
\end{equation*}
$$

where

$$
R_{K}=\left(i d \otimes \pi_{K}\right) \circ \Delta \quad \text { and } \quad L_{K}=\left(\pi_{K} \otimes i d\right) \circ \Delta .
$$

We call w_{00} the zonal spherical function of V_{A} relative to K.
3. We introduce the notation of quantum r-minor determinants. Let I and J be two subsets of $\{0,1, \cdots, n\}$ with $\# I=\# J=r$. Arrange the elements of I and J in the increasing order: $I=\left\{i_{0}, \cdots, i_{r-1}\right\}\left(0 \leq i_{0}<\cdots<\right.$ $\left.i_{r-1} \leq n\right)$ and $J=\left\{j_{0}, \cdots, j_{r-1}\right\}\left(0 \leq j_{0}<\cdots<j_{r-1} \leq n\right)$. We define the quantum r-minor determinant ξ_{J}^{I} by

$$
\begin{equation*}
\xi_{J}^{I}=\xi_{j_{0} \cdots j_{r-1}}^{i_{0} \cdots i_{r-1}}=\sum_{\sigma \in \mathcal{S}_{r}}(-q)^{l(\sigma)} x_{i_{0 j_{\sigma(0)}}} x_{i_{1 j_{\sigma(0)}}} \cdots x_{i_{r-1 j_{\sigma(r-1)}}} . \tag{3.1}
\end{equation*}
$$

If $I=\{0,1, \cdots r-1\}$, we use the abbreviation $\xi_{J}=\xi_{J}^{I}$.
To investigate spherical functions, we give a geometric realization of V_{A} (cf. [3]).

Let $\Lambda=\Lambda_{\mu_{0}}+\Lambda_{\mu_{1}}+\cdots+\Lambda_{\mu_{k-1}}\left(\mu_{0} \geq \cdots \geq \mu_{k-1}>0\right)$ be a dominant integral weight. Let $\boldsymbol{J}=\left(J_{0}, \cdots J_{k-1}\right)$ be a sequence of non-empty subsets of $\{0,1$, $\cdots, n\}$ with $\# J_{s}=\mu_{s}$ for $0 \leq s<k$. We call J a column strict plane partition of shape Λ if the following conditions are satisfied:

$$
\left\{\begin{array}{l}
J_{s}=\left\{j_{0, s}, \cdots, j_{\mu_{s}-1, s}\right\} \subset\{0,1, \cdots, n\}, \tag{3.2}\\
j_{r, s}<j_{r+1, s} \text { and } j_{r, s} \leq j_{r, s+1} .
\end{array}\right.
$$

The irreducible representation of V_{A} can be realized as a right sub- $A(G)$ -
comodule as

$$
\begin{equation*}
V_{A}=\sum_{J} C \xi_{J} \subset A(G), \tag{3.3}
\end{equation*}
$$

where the sum is taken over the set of all column strict plane partitions of shape 4 and

$$
\begin{equation*}
\xi_{J}=\xi_{J_{0}} \cdots \xi_{J_{k-1}} \quad \text { if } J=\left(J_{0}, \cdots, J_{k-1}\right) . \tag{3.4}
\end{equation*}
$$

It is seen that these vectors ξ_{J} are linearly independent and that they form a C-basis for a right $A(G)$-comodule. Note that the product of minor determinants

$$
\begin{equation*}
\xi_{01 \cdots \mu_{0}-1} \cdots \xi_{01 \cdots \mu_{k-1}-1} \tag{3.5}
\end{equation*}
$$

gives the highest weight vector of V_{A}. We remark that V_{A} is identified with the vector space of all left relative B_{-}-invariants in $A\left(S L_{q}(n+1 ; C)\right)$ with respect to the character corresponding to Λ, where B_{-}is the Borel subgroup "of lower triangular matrices" (see [3]).

If $\Lambda=l \Lambda_{\mathrm{i}}+m \Lambda_{n}(l, m \in N)$, the spherical representation V_{A} contains a K-fixed vector
(3.6)

$$
v_{0}=\left(\xi_{n}^{0}\right)^{l}\left(\xi_{01 \cdots n-1}^{01 \cdots n-1}\right)^{m} .
$$

By using algebraic properties of quantum minor determinants, we can determine explicitly the zonal spherical function of V_{A} in terms of basic hypergeometric series ${ }_{2} \varphi_{1}$:

$$
{ }_{2} \varphi_{1}\left(\begin{array}{c}
a, b \tag{3.7}\\
c
\end{array} ; q, z\right)=\sum_{k=0}^{\infty} \frac{(a ; q)_{k}(b ; q)_{k}}{(c ; q)_{k}(q ; q)_{k}} z^{k}, \quad(a ; q)_{k}=\prod_{j=0}^{k-1}\left(1-a q^{j}\right) .
$$

Theorem. Let V_{A} be the representation of $G=S U_{q}(n+1)$ with highest weight $\Lambda=l \Lambda_{1}+m \Lambda_{n}(l, m \in N)$. Then the zonal spherical function $w=w_{00}$ of V_{A} relative to $K=S U_{q}(n)$ is expressed by a basic hypergeometric series in $z=1-x_{n n} \xi_{01 \cdots n-1}^{01 \cdots-1}$ as follows:

$$
w=\left(x_{n n}\right)^{l-m}{ }_{2} \varphi_{1}\left(\begin{array}{c}
q^{-2 m}, q^{2(l+n)} \tag{3.8}\\
q^{2 n}
\end{array} q^{2}, q^{2} z\right) \quad \text { if } l \geq m
$$

and

$$
w={ }_{2} \varphi_{1}\left(\begin{array}{c}
q^{-2 l}, q^{2(m+n)} \tag{3.9}\\
q^{2 n}
\end{array} q^{2}, q^{2} z\right)\left(\xi_{01 \cdots n-1}^{01 \cdots-1}\right)^{m-l} \quad \text { if } l \leq m
$$

The above polynomials in z are so-called little q-Jacobi polynomials. As for zonal spherical functions, Theorem generalizes a result of [1, 2].

References

[1] T. Masuda et al.: Representations of quantum groups and a q-analogue of orthogonal polynomials. C. R. Acad. Sci. Paris, Série I, 307, 559-564 (1988).
[2] --: Representations of the quantum group $S U_{q}(2)$ and the little q-Jacobi polynomials (preprint).
[3] M. Noumi, H. Yamada, and K. Mimachi: Representations of the quantum group $G L_{q}(n+1$; C) (in preparation).
[4] N. Yu. Reshetikhin, L. A. Takhtajan, and L. D. Faddeev: Quantization of Lie groups and Lie algebras (to appear in Algebra and Analysis) (in Russian).

[^0]: *) Department of Mathematics, Sophia University.
 **) Department of Mathematics, Tokyo Metropolitan University.
 ***) Department of Mathematics, Nagoya University.

