48. Zonal Spherical Functions on the Quantum Homogeneous Space $SU_q(n+1)/SU_q(n)$

By Masatoshi NoUMI,^{*)} Hirofumi YAMADA,^{**)} and Katsuhisa MIMACHI^{***)}

(Communicated by Shokichi IYANAGA, M. J. A., June 13, 1989)

In this note, we give an explicit expression to the zonal spherical functions on the quantum homogeneous space $SU_q(n+1)/SU_q(n)$. Details of the following arguments as well as the representation theory of the quantum group $SU_q(n+1)$ will be presented in our forthcoming paper [3]. Throughout this note, we fix a non-zero real number q.

1. Following [4], we first make a brief review on the definition of the quantum groups $SL_q(n+1; C)$ and its real form $SU_q(n+1)$.

The coordinate ring $A(SL_q(n+1; C))$ of $SL_q(n+1; C)$ is the *C*-algebra $A = C[x_{ij}; 0 \le i, j \le n]$ defined by the "canonical generators" x_{ij} $(0 \le i, j \le n)$ and the following fundamental relations:

(1.1) $x_{ik}x_{jk} = qx_{jk}x_{ik}, \quad x_{ki}x_{kj} = qx_{kj}x_{ki}$ for $0 \le i < j \le n, \ 0 \le k \le n,$ (1.2) $x_{il}x_{jk} = x_{jk}x_{ll}, \quad x_{ik}x_{jl} - qx_{il}x_{jk} = x_{jl}x_{ik} - q^{-1}x_{jk}x_{il}$ for $0 \le i < j \le n, \ 0 \le k < l \le n$ and (1.3) $\det_q = 1.$ The symbol \det_q stands for the quantum determinant

(1.4)
$$\det_{q} = \sum_{\sigma \in S_{n+1}} (-q)^{l(\sigma)} x_{0\sigma(0)} x_{1\sigma(1)} \cdots x_{n\sigma(n)},$$

where S_{n+1} is the permutation group of the set $\{0, 1, \dots, n\}$ and, for each $\sigma \in S_{n+1}$, $l(\sigma)$ denotes the number of pairs (i, j) with $0 \le i < j \le n$ and $\sigma(i) > \sigma(j)$. This algebra A has the structure of a Hopf algebra, endowed with the coproduct $\Delta: A \to A \otimes A$ and the counit $\varepsilon: A \to C$ satisfying

(1.5)
$$\Delta(x_{ij}) = \sum_{k=0}^{n} x_{ik} \otimes x_{kj} \text{ and } \varepsilon(x_{ij}) = \delta_{ij} \text{ for } 0 \leq i, j \leq n.$$

Moreover, there exists a unique conjugate linear anti-homomorphism $a \mapsto a^* : A \to A$ such that

(1.6) $x_{ji}^* = S(x_{ij})$ for $0 \le i, j \le n$ with respect to the *antipode* $S: A \to A$ of A. Together with this *-operation, the Hopf algebra $A = A(SL_q(n+1; C))$ defines the *-Hopf algebra $A(SU_q(n+1))$.

In what follows, we denote by G the quantum group $SU_q(n+1)$ and by K the quantum subgroup $SU_q(n)$ of $G=SU_q(n+1)$. Denote by y_{ij} $(0 \le i,$

^{*)} Department of Mathematics, Sophia University.

^{**)} Department of Mathematics, Tokyo Metropolitan University.

^{***)} Department of Mathematics, Nagoya University.

 $j \leq n$) the canonical generators for the coordinate ring A(K). Embedding of K into G is then specialized by the C-algebra epimorphism $\pi_k: A(G) \rightarrow K$ A(K) such that

 $\pi_{K}(x_{ij}) = y_{ij}, \quad \pi_{K}(x_{nn}) = 1 \quad \text{and} \quad \pi_{K}(x_{in}) = \pi_{K}(x_{nj}) = 0$ (1.7)for $0 \le i$, j < n.

2. For a given dominant integral weight $\Lambda = \lambda_0 \varepsilon_0 + \cdots + \lambda_{n-1} \varepsilon_{n-1}$ $(\lambda_0 \ge 1)$ $\cdots \ge \lambda_{n-1} \ge 0$), there exists a unique irreducible right A(G)-comodule V_A with highest weight Λ . We denote by Λ_k the fundamental weight $\varepsilon_0 + \cdots$ $+\epsilon_{k-1}$ for $1 \le k \le n$. As a representation of $K = SU_q(n)$, V_A can be decomposed into irreducible components. It turns out that V_{Λ} has a trivial representation of K as an irreducible component if and only if the highest weight Λ is of the form $\Lambda = l\Lambda_1 + m\Lambda_n$ for some $l, m \in N$ and that the trivial representation may appear with multiplicity one. Such a representation V_{A} is said to be of class 1 relative to K.

If V_{Λ} is of class 1, it can be decomposed into the form (2.1)

$$V_{A} = C v_{0} \oplus V'_{A}$$

as an A(K)-comodule, where v_0 is a K-fixed vector of V_A . Let $\{v_1, \dots, v_{N-1}\}$ be a C-basis for V'_{4} ($N = \dim_{C} V_{4}$) and define the matrix elements w_{ij} of the representation V_A by

$$(2.2) R_{_{G}}(v_{_{j}}) = \sum_{_{i=0}^{N-1}}^{^{N-1}} v_{_{i}} \otimes w_{_{ij}} for \ 0 \le j < N.$$

Here $R_g: V_A \rightarrow V_A \otimes A(G)$ is the structure mapping of the right A(G)comodule V_{A} . Then the matrix element w_{00} does not depend on the choice of v_0, \dots, v_{N-1} and is *bi-K-invariant* in the sense that

(2.3)
$$R_{K}(w_{00}) = w_{00} \otimes 1 \text{ and } L_{K}(w_{00}) = 1 \otimes w_{00},$$

where

 $R_{\kappa} = (id \otimes \pi_{\kappa}) \circ \varDelta$ and $L_{\kappa} = (\pi_{\kappa} \otimes id) \circ \varDelta$.

We call w_{00} the zonal spherical function of V_A relative to K.

3. We introduce the notation of quantum *r*-minor determinants. Let I and J be two subsets of $\{0, 1, \dots, n\}$ with $\sharp I = \sharp J = r$. Arrange the elements of I and J in the increasing order: $I = \{i_0, \dots, i_{r-1}\} \ (0 \le i_0 \le \dots \le i_r \le i$ $i_{r-1} \le n$) and $J = \{j_0, \dots, j_{r-1}\}$ $(0 \le j_0 \le \dots \le j_{r-1} \le n)$. We define the quantum r-minor determinant ξ_{I}^{I} by

(3.1)
$$\xi_J^I = \xi_{j_0 \cdots j_{r-1}}^{i_0 \cdots i_{r-1}} = \sum_{\sigma \in S_r} (-q)^{l(\sigma)} x_{i_0 j_{\sigma(0)}} x_{i_1 j_{\sigma(0)}} \cdots x_{i_{r-1} j_{\sigma(r-1)}}$$

If $I = \{0, 1, \dots, r-1\}$, we use the abbreviation $\xi_I = \xi_I^I$.

To investigate spherical functions, we give a geometric realization of V_{4} (cf. [3]).

Let $\Lambda = \Lambda_{\mu_0} + \Lambda_{\mu_1} + \cdots + \Lambda_{\mu_{k-1}}$ $(\mu_0 \ge \cdots \ge \mu_{k-1} \ge 0)$ be a dominant integral weight. Let $J = (J_0, \dots, J_{k-1})$ be a sequence of non-empty subsets of $\{0, 1, \dots, N_{k-1}\}$ \dots, n with $\#J_s = \mu_s$ for $0 \le s \le k$. We call J a column strict plane partition of shape Λ if the following conditions are satisfied:

(3.2)
$$\begin{cases} J_s = \{j_{0,s}, \cdots, j_{\mu_{s-1},s}\} \subset \{0, 1, \cdots, n\}, \\ j_{r,s} < j_{r+1,s} \quad \text{and} \quad j_{r,s} \le j_{r,s+1}. \end{cases}$$

The irreducible representation of V_{A} can be realized as a right sub-A(G)-

No. 6]

comodule as

 $(3.3) V_A = \sum_J C \xi_J \subset A(G),$

where the sum is taken over the set of all column strict plane partitions of shape \varDelta and

(3.4) $\xi_J = \xi_{J_0} \cdots \xi_{J_{k-1}} \quad \text{if } J = (J_0, \cdots, J_{k-1}).$

It is seen that these vectors ξ_J are linearly independent and that they form a *C*-basis for a right A(G)-comodule. Note that the product of minor determinants

(3.5) $\xi_{01...\mu_{0}-1}\cdots\xi_{01...\mu_{k-1}-1}$

gives the highest weight vector of V_A . We remark that V_A is identified with the vector space of all left relative B_{-} -invariants in $A(SL_q(n+1; C))$ with respect to the character corresponding to Λ , where B_{-} is the Borel subgroup "of lower triangular matrices" (see [3]).

If $\Lambda = l\Lambda_i + m\Lambda_n$ $(l, m \in N)$, the spherical representation V_A contains a K-fixed vector

(3.6) $v_0 = (\xi_n^0)^l (\xi_{01\cdots n-1}^{01\cdots n-1})^m.$

By using algebraic properties of quantum minor determinants, we can determine explicitly the zonal spherical function of V_{d} in terms of basic hypergeometric series $_{2}\varphi_{1}$:

(3.7)
$$_{2}\varphi_{1}\binom{a, b}{c}; q, z = \sum_{k=0}^{\infty} \frac{(a; q)_{k}(b; q)_{k}}{(c; q)_{k}(q; q)_{k}} z^{k}, \qquad (a; q)_{k} = \prod_{j=0}^{k-1} (1 - aq^{j}).$$

Theorem. Let V_A be the representation of $G=SU_q(n+1)$ with highest weight $\Lambda=l\Lambda_1+m\Lambda_n$ $(l, m \in N)$. Then the zonal spherical function $w=w_{00}$ of V_A relative to $K=SU_q(n)$ is expressed by a basic hypergeometric series in $z=1-x_{nn}\xi_{01}^{01\dots n-1}$ as follows:

(3.8)
$$w = (x_{nn})^{l-m} \varphi_1 \left(\begin{array}{c} q^{-2m}, q^{2(l+n)} \\ q^{2n} \end{array}; q^2, q^2z \right) \quad if \ l \ge m,$$

and

$$(3.9) w = {}_{2}\varphi_{1} \left(\begin{matrix} q^{-2l}, q^{2(m+n)} \\ q^{2n} \end{matrix}; q^{2}, q^{2}z \end{matrix} \right) (\xi_{01\dots n-1}^{01\dots n-1})^{m-l} if l \leq m.$$

The above polynomials in z are so-called *little q-Jacobi polynomials*. As for *zonal* spherical functions, Theorem generalizes a result of [1, 2].

References

- T. Masuda *et al.*: Representations of quantum groups and a q-analogue of orthogonal polynomials. C. R. Acad. Sci. Paris, Série I, 307, 559-564 (1988).
- [2] —: Representations of the quantum group $SU_q(2)$ and the little q-Jacobi polynomials (preprint).
- [3] M. Noumi, H. Yamada, and K. Mimachi: Representations of the quantum group $GL_q(n+1; C)$ (in preparation).
- [4] N. Yu. Reshetikhin, L. A. Takhtajan, and L. D. Faddeev: Quantization of Lie groups and Lie algebras (to appear in Algebra and Analysis) (in Russian).