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47. A Note on Irreducible Representations of Profinite
Nilpotent Groups

By Katsuya MIYAKE*) and Hans OPOLKATM

(Communicated by Shokichi IYANAGA, M. J. A., June 13, 1989)

1. The purpose of this work is to parametrize the set of isomorphism
classes of complex continuous finite dimensional irreducible representations
of a profinite nilpotent group G by certain characters of the Lie ring
L(G) of G which is formed from the lower central series of G. Since
every component L(G) of L(G) is a certain quotient of T(G), the/-fold

tensor product of G=G/[G, G], this implies that the irreducible repre-
sentations of G are determined by certain characters of G.

2. Let G be a profinite nilpotent group, and for every integer c 1,
denote by Ic(G) the set of isomorphism classes of (complex continuous
finite dimensional) irreducible representations of G such that their finite
images are nilpotent of class c. Put

I(G) "= I(G).

Denote the closed commutator subgroup of G by [G, G] and put
GO=G/[G, G],

T(G)=i-fold tensor product of G,
Tc(a)= ] T(G), T(G)= I] T(G)

or 1oelly eompget belin group A denote its Pontrjggin dul by A^.
We shll show the substntil contents o the ollowing statement in the
sequel o the proof"

Theorem 1. There are quotients To(G) and T(G) of Tc(G) and T(G),
respectively, which are determined by certain relations between commu-
tators of G, and sur]ective maps

T(G) > It(G), T(G) I(G).
i=1

Remark. A preliminary version of this result is contained in [3],
9, and showed on the basis of Clifford’s theory (e.g. [1]-V, or [3], 5,

for the profinite case) and the results o1 Yamazaki [4] on projective
representations of finite groups. However, we give here a different proof
based on the results of Iwahori and Matsumoto [2] which shows that
the maps may be considered canonically.

3. In the proof of the theorem we use the following notation. Let
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G=G_G=[G, G]_G=[G, G]_.
be the lower central series of G and put

L(G)-G/ G/,, Lc(G) l L(G), L(G)- L(G).
i=1 il

It follows frcm the delinition that
x(R)x.(R). .(R)x. >[...[[x,x],x],...,x]

induces an epimorphism
T(G) ----> L(G).

The kernel consists o relations between the commutators o G in G
modulo G+. Therefore, the theorem is an immediate consequence of
the %llowing propcsiticn he proo o which is given in Section 5.

Proposition 1. (i) I(G) is canonically identified with LI(G). (ii)
For each c:>2, the members of I(G) are fully parametrized by the ele-
ments of L(G)--L-(G).

4. The incidence correspondence. In this section, we consider a

profinite group H and its closed normal subgroup N such that the quotient
group A=H/N is abelian, and establish one of the basic results of Iwahori
and Matsumoto [2], Theorem 4.13, also in the case where A is infinite.
Let S and T be complex continuous finite dimensional irreducible repre-
sentations o H and N, respectively; after Iwahori and Matsumoto we

say that S and T are incident if T is equivalent to an irreducible com-
pvnent o the restriction, res(S), o S to N; denote the multiplicity o
T in res(S) by (res(S)" T); then S and T are incident if and only if
(res(S)" T)_I. We denote the equivalence classes o S and T by [S] and
[T], respectively.

Now the set I(H) of all equivalence classes of complex continuous
finite dimensional irreducible representations of H is acted by A by
twisting-multiplication, on one hand. The isotropy subgroup o an ele-
ment [S] is denoted by A^z; we will soon see that this is always a

finite group. On the other hand, the quotient group A itself acts on

I(N) as %llows" for g eH and [T] eI(N) define [T] to be the class of
Tq(x)’=T(g-xg), x e N; obviously this induces the action o A on I(N).
The isotropy subgroup of an element [T] is denoted by A;r.

Theorem 2. Let H be a profinie group, and N be a closed normal
subgroup such that A=H/N is abelian. Then, (I) for every complex finite
dimensional irreducible representation S of H, there is an irreducible
representation T of N such that (res(S)’T)_l;T is unique up to the
action of A; the isotropy group Ar is a closed subgroup of A of finite
index. Conversely, (II) for every complex finite dimensional irreducible
representation T of N, there exists an irreducible representation S of H
which is incident to T; S is unique up to the action of A; the isotropy

group Az is finite. Thus, there exists a canonical bijection between
the two sets of orbits I(N) A and I(H) A. Moreover, (III) if S and T
are as above incident, then the annihilator Ar of Ar lies in Az, and
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the index is determined by
[As" Ar]=(res(S) T).

Proof. Let H, N and A be as in the theorem. We can reduce
Theorem 2 to the case where H is finite, that is, to Theorem 4.13 of
Iwahori and Matsumoto [2], by the usual way. First let S and S’ be those
irreducible representations o H both o which are incident to the same
irreducible representation of N. Then the quotient group H/Ker(S)
Ker(S’) is finite. Hence by Theorem 4.13 of [2] we conclude that S’ is
a multiple of S by an inflated element o A rcm the dual group of
A/{(Ker(S)SKer(S’)).N/N}. Next suppose that an irreducible represen-
tation T of N is given. Then Ker(T) is an ope subgroup of N. Therefore
there is an cpen normal subgroup U of H such that UNKer(T). Put

H’=H/U, N’-NU/U and A’=H/N.
Then we have an irreducible representation T of N determined by T
because NN/UN. Take an irreducible component S of the induced
representation of H rom T. Then by the Frobenius reciprocity lw,
we see that S and T are incident. Let S be the inflation of S on H.
It is obvious that S is a continuous irreducible representation of H which
is incident to T. Now cr geU and xeN, we have

T(x) T(g-xg)= T(x. x-g-xg)= T(x)
because x-g-xg belongs to the subgroup UN of Ker(T). Hence the
isotropy group Ar contains NU/N; urthermore, it is clear that Ar/NU
is none other than A. Next let be the inflation o an element o A to
H. Then it is obvious that (R)S is equivalent to S only if Ker() contains
Ker(S) in which U lies. Therefcre has to be the inflation of an element
o A. This shows that the isotrcpy graup A, is the image of the finite
group A: by the inflation map. Our theorem is now completely reduced
to the finite case o H, N and A, and easily verified by Theorem 4.13
of [2].. Proof of Proposition I. (i) is obvious. To show (ii), first we
fix a "section" /" I(G/)-->I(G) for each i--1, 2, 3,..., as follows" by
Theorem 2, there exists a canonical surjection from I(G+,) onto the set
of orbits I(G)/L(G); choose a section of the natural projection of I(G)
onto the set of orbits which assign its representative to each orbit; then
the composition of these two maps is our section /. It is clear that

(5.1) ’/ maps I(G/)into I/(G) for each c_l; for each [T]
I(G.), the orbit L(G).y/([T]) consists of all these classes the members
of which are incident to T.
Now we define a map "L(G)-L-(G)-I(G) for c_2. Let be an
element of form

e---(,, , .-., ) L(G), L(G), :.
Let D--inf() be the linear representation of G naturally determined by. Then %([D]) belongs to I(G_,). Therefore

_
determines a class of

representation [D_]--_.’([D])e I(Gc_). In this manner, successively,
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finally determines an equivalent class [D] of irreducible representation
in I(G). We assign t()=[D,] to o to define the map t. Conversely,
suppose that [D] e I(G) is given. Take [Dd e I-(G) such that D and
D are incident. Then there is an element o e L(G) to satisfy [D]=
o.7([D]). Next we can find those D and o for D which satisfy
[D]=o.7([D]), and so on, and finally obtain a series of elements o, o,
.., o_ and [De] e I(G). Since D is a linear character, it certainly gives

o e L(G); this cannot be trivial because D(G) is nilpotent o class c
by assumption. Thus we hve ound an element

o--(ol, o2, -.., oc) e Lc(G)’, o e L(G)’, oc=/=1,
which is sent to [D] by the above constructed map t. This shows that
t is surjective. Proposition 1 is now proved.

Remark 1. The proposition is easily modified or a profinite solvable
.group if its derived series is taken in place of the lower central series.

Remark 2. If we apply our theorem to the case where G is the
’Galois group of the maximal nilpotent extension of number field k,
we see from class field theory that the elements D in I(G)are determined
by certain characters of the idele class group of k, and it is an important
task to determine the ramification properties of D from thcse of the
corresponding idele class group characters.
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