# 45. On Convolution Theorems 

By Shigeyoshi Owa<br>Department of Mathematics, Kinki University<br>(Communicated by Kôsaku Yosida, M. J. A., June 13, 1989)

The object of the present paper is to prove convolution theorems for close-to-convex functions of order $\alpha$ and type $\beta$ and convex functions of order $\gamma$, and for functions satisfying $\operatorname{Re}\left\{f^{\prime}(z)\right\}>\alpha$ and convex functions.

1. Introduction. Let $\mathcal{A}$ be the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disk ${ }^{〔} U=\{z:|z|<1\}$. We denote by $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$ the subclasses of $\mathcal{A}$ consisting of functions which are, respectively, starlike of order $\alpha(0 \leqq \alpha<1)$ in $U$ and convex of order $\alpha(0 \leqq \alpha<1)$ in U. In particular, we write $\mathcal{S}^{*}(0) \equiv \mathcal{S}^{*}$ and $\mathcal{K}(0) \equiv \mathcal{K}$.

A function $f(z)$ belonging to the class $\mathcal{A}$ is said to be close-to-convex of order $\alpha$ and type $\beta$ if there exists a function $g(z)$ in the class $\mathcal{K}(\beta)$ such that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{g^{\prime}(z)}\right\}>\alpha \tag{1.2}
\end{equation*}
$$

for some $\alpha(0 \leqq \alpha<1)$ and for all $z \in \mathcal{Q}$. We denote by $\mathcal{K}_{\alpha}(\beta)$ the subclass of $\mathcal{A}$ consisting of functions which are close-to-convex of order $\alpha$ and type $\beta$ in $\mathcal{U}$. Also we write $\mathcal{K}_{\alpha}(0) \equiv \mathcal{K}_{\alpha}$.

Further, a function $f(z)$ in the class $\mathcal{A}$ is said to be a member of the class $\mathcal{R}(\alpha)$ if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{f^{\prime}(z)\right\}>\alpha \tag{1.3}
\end{equation*}
$$

for some $\alpha(0 \leqq \alpha<1)$ and for all $z \in \mathscr{C}$.
For functions

$$
\begin{equation*}
f_{j}(z)=z+\sum_{n=2}^{\infty} a_{n, j} z^{n} \quad(j=1,2) \tag{1.4}
\end{equation*}
$$

belonging to the class $\mathcal{A}$, we denote by $f_{1} * f_{2}(z)$ the convolution (or Hadamard product) of functions $f_{1}(z)$ and $f_{2}(z)$, that is

$$
\begin{equation*}
f_{1} * f_{2}(z)=z+\sum_{n=2}^{\infty} a_{n, 1} a_{n, 2} z^{n} \tag{1.5}
\end{equation*}
$$

2. Convolution theorems. In order to derive our convolution theorems, we have to recall here the following lemmas due to Owa [2].

Lemma 1. Let $\phi(z) \in \mathcal{K}$ and $g(z) \in \mathcal{S}^{*}$. If $F(z) \in \mathcal{A}$ and $\operatorname{Re}\{F(z)\}>\alpha$ ( $0 \leqq \alpha<1 ; z \in \mathcal{U}$ ), then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\phi * G(z)}{\phi * g(z)}\right\}>\alpha \quad(z \in \mathscr{U}) \tag{2.1}
\end{equation*}
$$

where $G(z)=F(z) g(z)$.

Lemma 2. If $f(z) \in \mathcal{K}(\alpha)$ and $h(z) \in \mathcal{K}(\beta)$, then $h * f(z) \in \mathcal{K}(\gamma)$, where $\gamma=\max (\alpha, \beta)$.

Applying the above lemmas, we prove
Theorem 1. If $f(z) \in \mathcal{K}_{\alpha}(\beta)$ and $h(z) \in \mathcal{K}(\gamma)$, then $h * f(z) \in \mathcal{K}_{\alpha}(\delta)$, where $\delta=\max (\beta, \gamma)$.

Proof. Note that, for $f(z) \in \mathcal{K}_{\alpha}(\beta)$, there exists a function $p(z) \in \mathcal{K}(\beta)$ such that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{p^{\prime}(z)}\right\}>\alpha \quad(z \in \mathcal{U}) \tag{2.2}
\end{equation*}
$$

Letting $\phi(z)=h(z), g(z)=z p^{\prime}(z), F(z)=f^{\prime}(z) / p^{\prime}(z)$, we have $\phi(z) \in \mathcal{K}(\gamma)$, $g(z) \in \mathcal{S}^{*}(\beta)$, and $\operatorname{Re}\{F(z)\}>\alpha(z \in \mathcal{U})$. Therefore, using Lemma 1, we see that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\phi * G(z)}{\phi * g(z)}\right\}=\operatorname{Re}\left\{\frac{h * z f^{\prime}(z)}{h * z p^{\prime}(z)}\right\}=\operatorname{Re}\left\{\frac{(h * f(z))^{\prime}}{(h * p(z))^{\prime}}\right\}>\alpha \tag{2.3}
\end{equation*}
$$

On the other hand, it follows from Lemma 2 that $h * p(z) \in \mathcal{K}(\delta)$, where $\delta=\max (\beta, \gamma)$. This implies that there exists a function $h * p(z) \in$ $\mathcal{K}(\delta)$ such that

$$
\operatorname{Re}\left\{\frac{(h * f(z))^{\prime}}{(h * p(z))^{\prime}}\right\}>\alpha \quad(z \in \mathscr{C})
$$

that is, that $h * f(z) \in \mathcal{K}_{\alpha}(\delta)$.
Next, we derive
Theorem 2. If $f(z) \in \mathscr{R}(\alpha)$ and $h(z) \in \mathcal{K}$, then $h * f(z) \in \mathcal{K}$.
Proof. Taking $\phi(z)=h(z) \in \mathcal{K}, g(z)=z \in \mathcal{K}$ and $F(z)=f^{\prime}(z)$ in Lemma 1, we obtain that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\phi * G(z)}{\phi * g(z)}\right\}=\operatorname{Re}\left\{\frac{h * z f^{\prime}(z)}{z}\right\}=\operatorname{Re}\left\{(h * f(z))^{\prime}\right\}>\alpha \tag{2.4}
\end{equation*}
$$

which shows that $h * f(z) \in \mathscr{R}(\alpha)$.
It is well-known by Strohhäcker [3] (also by MacGregor [1]) that if $f(z) \in \mathcal{K}$, then $f(z) \in \mathcal{S}^{*}(1 / 2)$. Therefore, in view of Theorem 1 and Theorem 2, we have the following conjectures.

Conjecture 1. If $f(z) \in \mathcal{K}_{\alpha}(\beta)$ and $h(z) \in \mathcal{S}^{*}(1 / 2)$, then $h * f(z) \in \mathcal{K}_{\alpha}(\beta)$.
Conjecture 2. If $f(z) \in \mathscr{R}(\alpha)$ and $h(z) \in \mathcal{S}^{*}(1 / 2)$, then $h * f(z) \in \mathscr{R}(\alpha)$.

## References

[1] T. H. MacGregor: A subordination for convex functions of order $\alpha$. J. London Math. Soc., (2)9, 530-536 (1975).
[2] S. Owa: A note on a convolution theorem. Chinese J. Math., 15, 147-151 (1987).
[3] E. Strohhäcker: Beiträge zur theorie der schlichten Funktionen. Math. Z., 37, 356-380 (1933).

