43. Estimates for Degenerate Schrödinger Operators and an Application for Infinitely Degenerate Hypoelliptic Operators

By Yoshinori Morimoto
School of Mathematics, Yoshida College, Kyoto University
(Communicated by Kôsaku Yosida, m. J. A., June 13, 1989)

1. Introduction and main theorems. In Chapter II of [1] Fefferman and Phong estimated the eigenvalues of Schrödinger operators $-\Delta+V(x)$ on R^{n} by using the uncertainty principle. Inspirated by their idea, in the present note we give two L^{2}-estimates for degenerate Schrödinger operators of higher order, which are a version and an extension of Theorem 4 in Chapter II of [1]. As an application, we consider the hypoellipticity for an example of infinitely degenerate elliptic operators.

Consider a symbol of the form

$$
\begin{equation*}
a(x, \xi)=\sum_{k=1}^{n} a_{k}(x)\left|\xi_{k}\right|^{2 \mu_{k}}+V(x), \quad x \in R^{n}, \tag{1}
\end{equation*}
$$

where μ_{k} are positive rational numbers, $V(x)$ is a non-negative measurable function and

$$
\left\{\begin{array}{l}
a_{1}(x)=1, \tag{2}\\
a_{k}(x)=\prod_{j=1}^{k-1}\left|x_{j}\right|^{2 \kappa(k, j)} \quad \text { for } k \geq 2 .
\end{array}\right.
$$

Here $\kappa(k, j)$ are non-negative rational numbers. If $\left(x_{0}, \xi_{0}\right) \in R^{2 n}$ and if $\delta=$ $\left(\delta_{1}, \cdots, \delta_{n}\right)$ for $\delta_{j}>0$, we denote by $B_{\delta}\left(x_{0}, \xi_{0}\right)$ a box

$$
\begin{equation*}
\left\{(x, \xi) ;\left|x_{j}-x_{0 j}\right| \leq \delta_{j} / 2,\left|\xi_{j}-\xi_{0 j}\right| \leq \delta_{j}^{-1} / 2\right\} . \tag{3}
\end{equation*}
$$

Clearly the volume of $B_{\dot{\delta}}\left(x_{0}, \xi_{0}\right)$ is equal to 1 . Let \mathcal{C} denote a set of boxes $B_{\delta}\left(x_{0}, \xi_{0}\right)$ for all $\left(x_{0}, \xi_{0}\right)$ and all δ. We denote by $\mathrm{m}_{l}(\cdot)$ the Lebesgue measure in R^{l}. We set $m_{k}=\mu_{k}-1$ if μ_{k} is integer and $m_{k}=\left[\mu_{k}\right]$ otherwise. Set $m_{0}=$ $\sum_{k=1}^{n} m_{k}$.

Theorem 1. Let $a(x, \xi)$ be the above symbol and let $W(x)$ be a continuous function in R^{n}. Assume that there exists a constant $1-2^{-m_{0}}<c \leq 1$ such that for any $B=B_{\delta}\left(x_{0}, \xi_{0}\right) \in \mathcal{C}$

$$
\begin{equation*}
\mathrm{m}_{2 n}\left(\left\{(x, \xi) \in B ; a(x, \xi) \geq \max _{\pi\left(B^{* * *}\right)} W(x)\right\}\right) \geq c, \tag{4}
\end{equation*}
$$

where π is a natural projection from $R_{x, s}^{2 n}$ to R_{x}^{n} and $B^{* *}$ denotes a suitable dilation of B whose modulus depends only on μ_{k} and $\kappa(k, j)$. Then for any compact set K of R_{x}^{n} there exists a constant $c_{K}>0$ such that

$$
\begin{equation*}
(a(x, D) u, u) \geq c_{K}(W(x) u, u) \quad \text { for any } u \in C_{0}^{\infty}(K) \tag{5}
\end{equation*}
$$

where (,) denotes the L^{2} inner product (cf. Theorem B in [5]).
Remark 1. The lower bound of c in (4) is 0 when all $\mu_{k} \leq 1$. If all $a_{k}(x) \equiv 1$ then the constant c_{K} in (5) can be taken independent of K. The
theorem holds even if each variable x_{j} is replaced by the vector $\boldsymbol{x}_{j}=\left(x_{1}^{j}\right.$, $\left.\cdots, x_{l_{j}^{j}}^{j}\right)$. The rationality assumption of μ_{k} and $\kappa(k, j)$ can be removed.

In the polynomial potential case the theorem becomes fairly simple. In order to explain this fact, for a $0<h \leq 1$ we redefine a set \mathcal{C}_{h} of boxes (6)

$$
\vec{B}_{\delta, h}\left(x_{0}, \xi_{0}\right) \equiv\left\{(x, \xi) ;\left|x_{j}-x_{0 j}\right| \leq \delta_{j} / 2,\left|\xi_{j}-\xi_{0 j}\right| \leq h \delta_{j}^{-1} / 2\right\}
$$

for all $\left(x_{0}, \xi_{0}\right)$ and all δ.
Theorem 2. Let $a(x, \xi)$ be the symbol of the form (1) with $V(x)$ replaced by a polynomial $U(x)$ in R^{n} of order d, which is not always nonnegative. Then for any compact set K of R^{n} there exists a positive $h=$ $h_{K} \leq 1$ satisfying the following property: If the estimate

$$
\begin{equation*}
\max _{B_{h}} a(x, \xi) \geq 0 \tag{7}
\end{equation*}
$$

holds for any $B_{h}=B_{\delta, h}\left(x_{0}, \xi_{0}\right) \in \mathcal{C}_{h}$ then we have
(8)

$$
(a(x, D) u, u) \geq 0 \quad \text { for any } u \in C_{0}^{\infty}(K)
$$

Here the positive h depends only on d, n, μ_{k} and $\kappa(k, j)$ except K.
Remark 2. When all $a_{k}(x) \equiv 1$ then we can take $h>0$ independent of K. Furthermore, if all $\mu_{k}=1$ then Theorem 2 is nothing but one part of Theorem 4 in Chapter II of [1].

Remark 3. When $V(x)$ and $W(x)$ in Theorem 1 are polynomials, Theorem 1 follows from Theorem 2 by putting $U(x)=V(x)-h^{2 \mu_{0}} W(x)$, where $\mu_{0}=\max _{1 \leq k \leq n} \mu_{k}$. In fact, this is obvious if we note that for $0<h \leq 1$

$$
\max _{B_{h}}\left\{a(x, \xi)-h^{2 \mu_{0}} W(x)\right\} \geq h^{2 \mu_{0}}\left\{\max _{B_{1}} a(x, \xi)-\max _{\pi\left(B_{1}\right)} W(x)\right\} .
$$

2. Infinitely degenerate hypoelliptic operators. As an application of Theorem 1 we consider a second order elliptic operator with infinite degeneracy as follows:

$$
\begin{equation*}
L=D_{1}^{2}+x_{1}^{2 l} D_{2}^{2}+x_{1}^{2 k} x_{2}^{2 m} D_{3}^{2}+f(x) D_{4}^{2} \quad \text { in } R^{4}, \tag{9}
\end{equation*}
$$

where l, k and m are positive integers and $f(x)=\exp \left(-1 /\left|x_{1}\right|^{k}-1 /\left|x_{2}\right|^{k}\right)+$ $\exp \left(-1 /\left|x_{1}\right|^{\delta}-1 /\left|x_{2}\right|^{\sigma}\right)$. Here $\tau=k+1+m(l+1), 0<\kappa<1, \delta>0$ and $\sigma>0$.

Theorem 3. (i) Suppose that $l \geq k$. If $0<\delta<k+1$ and $0<\sigma<m+$ $(k+1) /(l+1)$ then L is hypoelliptic in R^{4} and moreover we have

WF $L u=\mathrm{WF} u \quad$ for any $u \in \mathscr{D}^{\prime}$.
(ii) Suppose that $k>l$. If $0<\delta<l+1$ and $0<\sigma<m+1$ then we have (10).

Remark 4. In the case of (i), the assumption of Theorem 3 is optimal. That is, if either $\delta \geq k+1$ or $\sigma \geq m+(k+1) /(l+1)$ then L is not hypoelliptic in any neighborhood of the origin, (regardless of $l \geq k$). Furthermore, if $\sigma \geq m+1$ then we also get the non-hypoellipticity of L in any neighborhood of $\left\{x_{2}=0\right\}$. Those non-hypoellipticity results follow from the analogous method as in Theorem 1 of [2].

For the proof of the hypoellipticity of L we use the L^{2} apriori estimate method as in [3] and [4]. The key point in the proof is to derive the following two estimates: For any $\varepsilon>0$ and any compact set K of R^{4} there exists a constant $C_{\varepsilon, K}$ such that

$$
\begin{equation*}
\left(x_{1}^{2 k} x_{2}^{2 m}(\log \Lambda)^{2} u, u\right) \leq \varepsilon(L u, u)+C_{\varepsilon, K}\|u\|^{2} \quad \text { for } u \in C_{0}^{\infty}(K), \tag{11}
\end{equation*}
$$

and furthermore

$$
\begin{align*}
& \left(x_{1}^{2 l}(\log \Lambda)^{2} u, u\right) \leq \varepsilon(L u, u)+C_{\varepsilon, K}\|u\|^{2} \tag{12}\\
& \quad \text { for } u \in C_{0}^{\infty}(K) \text { with supp } u \cap\left\{x_{2}=0\right\}=\varnothing .
\end{align*}
$$

Here Λ denotes $\left(1+|D|^{2}\right)^{1 / 2}$. For a $M>0$ set

$$
a(x, \xi)=\xi_{1}^{2}+x_{1}^{2 l} \xi_{2}^{2}+\exp \left(-1 /\left|x_{1}\right|^{\delta}-1 /\left|x_{2}\right|^{\sigma}\right) M^{2}, \quad W(x)=\varepsilon^{-1} x_{1}^{2 k} x_{2}^{2 m}(\log M)^{2} .
$$

Then, by means of the microlocal analysis concentrated at $(0,(0,0,0, \pm 1)) \in$ $T^{*} R^{4}$, for the proof of the estimate (11) it suffices to show that the estimate (5) of Theorem 1 holds if $M>M_{\varepsilon}$ for a large M_{ε}. We shall check the assumption of (4) in the case of $l \geq k$. If K is a compact set of R^{2} and if $\alpha=$ $\{k+1+m(l+1)\}^{-1}$ and $\beta=(l+1) \alpha$ we set $\Omega_{1}=\left\{x \in K ;\left|x_{1}\right| \leq \rho_{1}(\log M)^{-\alpha},\left|x_{2}\right| \leq\right.$ $\left.\rho_{2}(\log M)^{-\beta}\right\}$. Here ρ_{j} are small positives and in what follows we require that
(13)

$$
\rho_{2} \ll \rho_{1} \ll \varepsilon, \quad \rho_{1} \ll 1 / r^{*},
$$

where r^{*} denotes the modulus of the dilation of (.)**. Suppose that $B \in \mathcal{C}$ satisfies $\pi(B) \subset \Omega_{1}$. Then it follows from (13) that $\max _{\pi\left(B^{* * *}\right)} W(x) \leq \varepsilon^{-1}(\log M)^{2 \alpha}$. Noting that $\xi_{1}^{2} \geq\left(4 \rho_{1}\right)^{-2}(\log M)^{2 \alpha}$ on a half of B, we get (4) in view of (13). If $\pi(B)$ is contained in $\left\{\left|x_{1}\right| \leq \rho_{1}(\log M)^{-1 /(k+1)}\right\} \cap K$ then we obtain (4) because we see that

$$
\max _{\pi^{(B+*)}} W(x) \leq \varepsilon^{-1} C_{K}(\log M)^{2 /(k+1)} \quad \text { and } \quad \xi_{1}^{2} \geq\left(4 \rho_{1}\right)^{-2}(\log M)^{2 /(k+1)}
$$

on a half of B. If B satisfies

$$
\begin{gather*}
\pi(B) \subset\left\{\left|x_{2}\right| \leq \rho_{2}(\log M)^{-\beta}\right\} \cap K, \tag{14}\\
b \equiv \max _{\pi(B)}\left|x_{1}\right| \geq \rho_{1}(\log M)^{-\alpha}, \tag{15}
\end{gather*}
$$

then we see that

$$
\max _{\pi\left(B^{* *}\right)} W(x) \leq \varepsilon^{-1}\left(b r^{*}\right)^{2 k}(\log M)^{2-2 \beta m} \quad \text { and } \quad x_{1}^{2 l} \xi_{2}^{2} \geq 2^{-6} b^{2 l} \rho_{2}^{-2}(\log M)^{2 \beta}
$$

on a quater of B. In view of $l \geq k$ and (15) we obtain (4) for this B. The assumption (4) for other $B \in \mathcal{C}$ is also obvious because we see that $\exp \left(-1 /\left|x_{1}\right|^{\sigma}-1 /\left|x_{2}\right|^{\sigma}\right) M^{2} \geq M$ on
(16) $\quad\left\{\left|x_{1}\right| \geq\left(\rho_{1} / 2\right)(\log M)^{-1 /(k+1)},\left|x_{2}\right| \geq\left(\rho_{2} / 2\right)(\log M)^{-\beta}\right\}$
if M is large enough that $\left(2 / \rho_{1}\right)^{\delta}(\log M)^{z /(k+1)}$ and $\left(2 / \rho_{2}\right)^{\sigma}(\log M)^{\beta \sigma}$ are less than $\log M^{1 / 2}$. In the case of $k>l$, the assumption (4) is checked by the same way as above if we replace β only in (14) and (16) by $(m+1)^{-1}$. The estimate (12) is also reduced to (5), by setting

$$
a(x, \xi)=\xi_{1}^{2}+\exp \left(-1 /\left|x_{1}\right|^{\rho}\right) M^{2}, \quad W(x)=\varepsilon^{-1} x_{1}^{2 l}(\log M)^{2} .
$$

The way how estimates (11) and (12) lead us to the hypoellipticity of L will be shown elsewhere. The proofs of Theorems 1 and 2 will be also given elsewhere.

References

[1] C. Fefferman: Bull. Amer. Math. Soc., 9, 129-206 (1983).
[2] T. Hoshiro: J. Math. Kyoto Univ., 28, 615-632 (1988).
[3] Y. Morimoto: Publ. RIMS Kyoto Univ., 22, 1129-1154 (1986).
[4] -: Osaka J. Math., 24, 13-35 (1987).
[5] -: Publ. RIMS Kyoto Univ., 23, 955-964 (1987).

