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1. Introduction and main theorems. In Chapter II of [1] Fefferman
and Phong estimated the eigenvalues of Schrodinger operators — 4+ V(x)
on R" by using the uncertainty principle. Inspirated by their idea, in the
present note we give two L’-estimates for degenerate Schriodinger operators
of higher order, which are a version and an extension of Theorem 4 in
Chapter II of [1]. As an application, we consider the hypoellipticity for
an example of infinitely degenerate elliptic operators.

Consider a symbol of the form

(1) a(z, &)= z 0,@) |+ V(2),  weRr,

where p;, are positive rational numbers, V(x) is a non-negative measurable
function and

a(®)=1,
(2) {
oy (@)= ] |2, [**» for k>2.
j=1
Here «(k, j) are non-negative rational numbers. If (x,, &)< R™ and if 6=
©,, - -+, 0, for §,>0, we denote by B;(x,, &) a box
(3) {(@, &) |@,—x0;|<3,/2, 1&,—&,;|<d;/ 2}

Clearly the volume of B,(x, &) is equal to 1. Let C denote a set of boxes
By(x,, &) for all (z,, &) and all 5. We denote by m, (-) the Lebesgue measure
in B'. We set m,=p,—1if p, is integer and m,=[y,] otherwise. Set m,=
Dk My

Theorem 1. Let a(x, & be the above symbol and let W(x) be a con-
tinuous function in R*. Assume that there exists a constant 1 —2"™<e¢<1
such that for any B=B(x, &) € C
(4) m,, ({(, §) € B; a(x, ) > max W@)h=ec,

where r is ¢ natural projection from R¥. to R? and B** denotes a suitable
dilation of B whose modulus depends only on yu, and x(k, 7). Then for any
compact set K of R there exists a constant ¢, >0 such that
(5) (@, Dyu, w=c (W(@u,w)  for any ue Cy(K),
where (, ) denotes the L* inner product (cf. Theorem B in [5]).

Remark 1. The lower bound of ¢ in (4) is 0 when all p,<1. If all
a,(®)=1 then the constant ¢, in (5) can be taken independent of K. The
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theorem holds even if each variable x, is replaced by the vector x,=(xf,
-+, x]). The rationality assumption of g, and «(k, j) can be removed.

In the polynomial potential case the theorem becomes fairly simple.
In order to explain this fact, for a 0<<h<<1 we redefine a set C, of boxes
(6) B; . (x, £)={(x, &) Ixj"“xwl_<_5;/2’ 1$j—§0j|gh5;1/2}
for all (x,, &) and all 6.

Theorem 2. Let a(zx, &) be the symbol of the form (1) with V(x) re-
placed by a polynomial U(x) in R™ of order d, which is not always non-
negative. Then for any compact set K of R" there exists a positive h=
h <1 satisfying the following property: If the estimate

(7) max a(x, £)>0
Bn
holds for any B, =B; (%, &) € C, then we have
(8) (a(x, D)u, w)>0 for any uc Cy(K).

Here the positive h depends only on d, n, u, and k(k, j) except K.

Remark 2. When all a,(x)=1 then we can take 2>0 independent of
K. Furthermore, if all y,=1 then Theorem 2 is nothing but one part of
Theorem 4 in Chapter II of [1].

Remark 3. When V(x) and W(x) in Theorem 1 are polynomials, Theo-
rem 1 follows from Theorem 2 by putting U(x)=V(x)—h*W(x), where
fo=MaX, .., - In fact, this is obvious if we note that for 0<hr<1

mBax {a(x, & — Rt W ()} > R {ml;ax a(zx, 5)—111(2.}){ W(x)}.

2. Infinitely degenerate hypoelliptic operators. As an application of
Theorem 1 we consider a second order elliptic operator with infinite degen-
eracy as follows:

(9) L=D}+ D3+ at*x3" D3+ f(x)Di  in RY,
where [, k and m are positive integers and f(x)=exp(—1/|x,[—1/]|2,|)+
exp (—1/|x,—1/|2,]"). Here r=k+1+m(l+1), 0<k<1, >0 and ¢>0.

Theorem 3. (i) Suppose that I>k. If 0<o<k+1 and 0<o<m+
(k+1)/(+1) then L is hypoelliptic in R* and moreover we have
(10) WF Lu=WF u for any ue 9.

(i) Swuppose that k>1. If 0<6<l+1 and 0<o<<m+1 then we hove
(10).

Remark 4. Inthe case of (i), the assumption of Theorem 3 is optimal.
That is, if either 6>k+1 or 6>m—+ (k+1)/(1+1) then L is not hypoelliptic
in any neighborhood of the origin, (regardless of I>k). Furthermore, if
o>m+1 then we also get the non-hypoellipticity of L in any neighborhood
of {#,=0}. Those non-hypoellipticity results follow from the analogous
method as in Theorem 1 of [2].

For the proof of the hypoellipticity of L we use the L? apriori estimate
method as in [3] and [4]. The key point in the proof is to derive the fol-
lowing two estimates: For any ¢>0 and any compact set K of R* there
exists a constant C, , such that

an (zFxy"(log Au, w)<e(Lu, w)+C, xllulf  for ue CP(K),
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and furthermore
12) (x(log D*u, w)<e(Lu, u)+C,, | ul?
for ue Cy(K) with suppuN{z,=0}=o.
Here A denotes (1-+|DP)Y:.  For a M>0 set
a(@, & =&+ ai'gi+exp (— 1/, —1/|@|I)M?,  W(n)=e"'ai2;"(log M)".
Then, by means of the microlocal analysis concentrated at (0, (0,0,0, +1))
T*R*, for the proof of the estimate (11) it suffices to show that the estimate
(5) of Theorem 1 holds if M>M, for a large M,. We shall check the as-
sumption of (4) in the case of I>Fk. If K is a compact set of R* and if o=
{Ek+14+m(+D} ! and p=({+1Da we set 2,={xc K; |x,|<p,(log M), |2,|<
o:(log M)-#}. Here p, are small positives and in what follows we require
that
13) e oke, o L1/7¥,
where 7* denotes the modulus of the dilation of (.)**, Suppose that Be(C
satisfies n(B)C2,. Then it follows from (13) that max, ., W(x)<e '(log M)*.
Noting that &>(4p,) *(log M)* on a half of B, we get (4) in view of (13).
If z(B) is contained in {|z,|<p,(log M)-V**b} N K then we obtain (4) because
we see that
max W(x)<e 'Cr(og M)¥**b and &> (4p,) *(log M)¥*+»

7 (B¥F)

on a half of B. If B satisfies

14 7(B) C{|@,|< p.(log M)-F}N K,
(15) b=max |,|>p,(log M),
z(B)

then we see that
max W(x)<e '(br*)*(log M)*~*™ and x'&;>2°0*p;*(log M)**

7 (B*¥)
on a quater of B. In view of >k and (15) we obtain (4) for this B.
The assumption (4) for other B e (C is also obvious because we see that
exp (—1/|x, ) —1/|x,|YM*>M on
(16) {12,]> (o, /2)Aog M)+, |2,[> (p,/2)(log M)~}
if M is large enough that (2/p,)’(log M)”**» and (2]p,)’(log M)? are less
than log M. 1In the case of k>1, the assumption (4) is checked by the
same way as above if we replace p only in (14) and (16) by (m+1)"'. The
estimate (12) is also reduced to (5), by setting

a(x, &) =&1+exp (—1/|z, )M, W(x)=¢""ai'(log M)".

The way how estimates (11) and (12) lead us to the hypoellipticity of L will
be shown elsewhere. The proofs of Theorems 1 and 2 will be also given
elsewhere.
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