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1o Introduction. In this paper we present asymptotic stability theo-
rems or ordinary differential equations by extending Matrosov’s theorems
[4].

Let us consider the iollowing ordinary differential equation"

( 1 ) 2=X(t, x), (X(t, 0)_ 0),

where X: I’-R is a continuous unction, F=R+D, R+=[0, +c), and D
is a domain in R satisfying 0 e D.

Generalization o Liapunov’s asymptotic stability theorem is consid-
ered by Barbashin and Krasovskii (see [2] and [5]), Matrosov [4], LaSalle
[3], Hatvani [1], Wada and Yamamoto [7] and etc. These results include
the condition that the total derivative o a Liapunov unction computed
along the solutions of (1) is only negative semi-definite.

In the present paper, by extending Theorems 1.2 and 1.4 in [4], we
establish theorems or (globally) asymptotic stability, (globally) equi-
asymptotic stability and (globally) uniformly asymptotic stability as well as
uniform stability o the zero solution of (1). In Theorems 1.2 and 1.4 of
[4], Matrosov assumed that the function X, its partial derivatives 3X/3t,
X/3x (i=1, 2,..., n), and the first and second partial derivatives of a
Liapunov unction V, that is, V/t, V/x, V/t, V/tx, V/xx
(i, ] 1, 2, ., n), are continuous and bounded. In the oregoing paper [6],
we extended Theorem 1.2 in [4] and gave uniform asymptotic stability

theorems in which we generalized the above mentioned assumptions by
Matrosov. Our resulting theorems in the present paper includes more use-
ful conditions than the preceding paper’s.

2. Theorems. For e. 0, B is defined by B ={x e R [IX [[e} and for
a0, the set A(a,a) is defined by A(Ol,C2)-{xeRn:
where ]]xll denotes the Euclidean norm of x e R. Let C[A, E] be the family
ot all continuous unctions from a set A into a set E. A unction a(.)is
called a unction o class , i.e., a e, i a e C[R+,R /] is a strictly in-
creasing unction with a(0)=0. The positive part [x]+ of x e R is defined
by [x]+=max {0, x}, and the negative part [x]_ of x is defined by [x]_=
max {0, --x}. For a unction V e C[F, R] which is locally Lipschitzian in x,
the total derivative (,(t, x) of V with respect to (1) is defined by
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?(,)(t, x)=lim sup l{v(t+h, x+hX(t, x))-V(t, x)},
h-* +O

in F. Let x(. to, x0) be a solution of (1) passing through a point (to, xo) e F.
Theorem 1. Suppose that there exists a function V e C[F, R /] which

is locally Lipschitzian in x. For some h)O satisfying BD and for any
0 (h), there exists a continuously differentiable function W" R/
A(, h)-+R such that the following conditions hold.

( ) There exist functions a, b Jf such that for any (t, x) F,
a(llx )<_V(t, x)b(]x]l).

(ii) For any (t, x) e F, ()(t, x)<_ O, and there exists a function U e
C[R A(c, h), R /] which is locally Lipschitzian in x and absolutely con-
tinuous with respect to t such that for any (t, x)e R/ A(c, h),

?()(t, x)<_- U(t, x).
(iii) There exist constants r=r(a)O and L=L(a)O such that for

any (t, x) E--{(t, x) R/ A(a, h) U(t, x)r},
W(t, x) l_<_L.

(iv) There exists a function e C[R /, R/\{0}] satisfying (t)dt=

+ c such that for any (t, x) e E,
W(,(t, x)I>_ (t).

( v ) There exists a constant c0=c0(a)0 such that either the follow-
ing (a) or (b) is satisfied.

(a) For any (t, x) e {(t, x) e R A(c, h)" (r/2) U(t, x)r},
[gr(,)(t, x)]+ Co.

(b) For any (t, x) e {(t, x) e R+ A(a, h)" (r/2) U(t, x)r},
[gr)(t, x)]_ < co.

Then the zero solution of (1) is uniformly stable and attractive, and there-

fore it is asymptotically stable.
Corollary 1. In Theorem 1, let D--Rn, that is, F=R+R’, and sup-

pose that the function a(. ) in (i) satisfies a(2)--++ c as --+ c. Further,
suppose that for any constants h and satisfying O,a<h, condition (ii)
holds and there exists a continuously differentiable function W" R+
A(a, h)--R such that conditions (iii)-(v) hold. Then the zero solution of (1)
is globally asymptotically stable.

Notice that in Theorem 1, the constants r, L, Co and the unction #
depend only on a, but in Corollary 1, they depend on both c and h.

Theorem 2. In addition to the assumptions of Theorem 1, suppose
that the following condition (vi) holds.

(vi) Every solution of (1)passing through a point in F is unique to
the right.
Then the zero solution of (1) is equiasymptotically stable.

If, in addition to the assumptions of Corollary 1, condition (vi) holds,
then the zero solution of (1) is globally equiasymptotically stable.
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Theorem 2 is one of the extensions o Theorem 1.4 in [4]. The ollow-
ing Theorem 3 is obtained by extending Theorem 1.2 in [4].

Theorem :. In the assumptions of Theorem 1, suppose that condi-
tion (iv) is replaced by the fo.owing (iv’).

(iv’) There exists a constant 0=0(a) 0 such that [or any (t, x) e E=
{(t, x) e R X A(c, h)" U(, x)<r},

W,(t, x)l>_ o.
Then the zero solution of (1) is uniformly asymptotically stable.

If, in the assumptions of Corollary 1, condition (iv) is replaced by (iv’),
then the zero solution of (1) is globally uniformly asymptotically stable.

3. Proofs. Proof of Theorem 1. (i) and (ii) imply that the zero solu-
tion of (1) is uniformly stable, that is, for any e 0, there exists a constant
=()0 such that or every t*0, x* e B, any solution x(. t*, x*) of (1)
and any tt*, IIx(t; t*, x*)lle. Hence, there exists a constant V)0 such
that or every t0_0, x0 e B, any solution x(.)--x(. ;to, x0) o (1) and any
t>_ to, x(t) < h.

Now we show that there exists T T(to, e, x0, x(. ))0 such that X(to +
T)II. Suppose that it is not true, that is, or any t_to, IIx(t)ll. Let
a=. Then x(t)e A(a, h) for tto, and there exist constants r)0, L0,

c00 and continuous unctions U, $ satisfying conditions (ii)-(v).
Using (i) and (ii), we can show that there exists a sequence {r} e R

such that r-+c as i-++ and for any i e N, U(r,x(r3)(r/2). From
(iii), (iv) and the continuity of W(,(., x(.)), we can also show that there
exists a sequence {r} e R such that r--+ c as i-+ c and for any i e N,
U(r, x(r))r. Thus, from the continuity of U(., x(.)), we can choose
sequences {t} and {t} such that for any ie N, to_tt... ttt/x
.., t-+c as i--+, U(t, x(t))=(r/2), U(t, x(t))=r, (or U(t, x(t))-r,

U(t, x(t))- (r/2) or any i e N) and (r/2) U(t, x(t))r in (t, t). Then
condition (a) in (v) implies that or any i e N,

-U(t, x(t))-U(t, x(t3)= ,(t, x(t))dt

<_ [2(t, x(t))]/dt<_eo(t-t).

Thus we have

(2) t:-t>-ff
(If U(t, z(t))=r, U(t, x(t))=(r/2) for any i N, then trom eondition (b) in

(v), (2) is also obtained.) Hence it tbllows from (i) and (ii) that for any

v(t, x(t))<_ v(t’, x(t’))- v(t,, x(t))

<=[ ?()(s, x(s))ds_ I U(s, x(s))ds
dti =i ti

<_ r (t-tj<-k.
= - 4Co
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Since there exists/ e N such that the right hand side of (3) is less than the
left hand side, this is a contradiction. Thus, there exists T=T(to, , Xo,
x(. ))0 such that X(to / T)I1, and it ollows rom the definition of that
for any t_to+T, IIx(t)lle. This implies that the zero solution of (1) is
attractive, and therefore it is asymptotically stable. Q.E.D.

The proofs of Theorems 2 and 3 and the more detailed proof of The-
orem 1 will be published later.
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