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An operator means a bounded linear operator on a Hilbert space. By
only using the idea o polar decomposition, here we give an elementary
proof o the ollowing "order preserving inequality" in [1].

Theorem. If A=BO, then for each rO
( 1 ) (BrAPBr)I/qB(p+2r)/q

holds for each p and q such that pO, ql and (l+2r)qp+2r.
Proof. First of all, we cite (*) by LSwner-Heinz theorem.

( * ) ABO ensures A"B or any a e [0, 1].
In the case lp0, the result is obvious by (*). We have only to consider
p1 and q =(p+2r) (1 +’2r) since (1) or values q larger than (p+2r) (1 +2r)
ollows by (*). We may assume that A and B are invertible without loss
o generality. Let BrAn= UH be the polar decomposition of the invertible
operator BrA/ where U means the unitary and H=BA/. In the case
12r0, ArBr holds by (*), then or q=(p+2r)/(l+2r)

B-(BA’Br)/qB B-(UH U*)/qB B- UHvU’B-
A/H H/qH A/=A/(H)/q-A/
A/(A /B-A-/)-/A/
An(A /A-A-/)(-’/(+)A/

=AB,
so we have the following (2) for q=(p+2r)/(l+2r) and or any r e [0, 1/2]
( 2 (rAPBr)/qB+r.
Put AI=(BAB)/q and Bx=Bx+. Repeating (2) again or AiBO,
Ogrl/2 and pl

(nrApnrl/q>B+2r for q (p+2r)/(l+2r)
Put p q 1 and r 1/2, then
( 3 ) [B+mA,Br+m}/qB+).
Put s=2r+1/2. Then q=(p+2r)/(l+2r)=(p+2s)/(l+2s) since p=q
and 2(1+2r)=1+2s. Consequently (3) means that (2) holds or r e [0, 3/2]
since r e [0, 1/2] and s =2r+ 1/2 and repeating this method, (2) holds for
each r0, that is, (1) is shown.
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