26. Notes on Quasi-polarized Varieties

By Takao FUJITA

Department of Mathematics, University of Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., March 14, 1988)

0. Let V be a variety, which means, an irreducible reduced projective scheme over an algebraically closed field \Re of any characteristic. A line bundle L on V is said to be *nef* if $LC \ge 0$ for any curve C in V. It is said to be *big* if $\kappa(L) = n = \dim V$. In case L is nef, it is big if and only if $L^n > 0$ (cf. [2; (6.5)]). When L is nef and big, the pair (V, L) will be called a *quasipolarized variety*. In this note we report several generalizations of results on polarized manifolds. For details see [4].

1. We have $\chi(V, tL) = \sum_{j=0}^{n} \chi_j t^{[j]}/j!$ for some integers $\chi_0, \chi_1, \dots, \chi_n$ where $t^{[j]} = t(t+1) \cdots (t+j-1)$ and $t^{[0]} = 1$. By the Riemann-Roch theorem we have $\chi_n = L^n$. Moreover, if V is normal, we have

 $-2\chi_{n-1} = (\omega + (n-1)L)L^{n-1}$

for the canonical divisor ω of V. We set $g(V, L) = 1 - \chi_{n-1}$, which is called the *sectional genus* of (V, L). We set $\Delta(V, L) = n + L^n - h^0(V, L)$, which is called the Δ -genus of (V, L). We conjecture :

Both the Δ -genus and the sectional genus are non-negative for any quasi-polarized variety. Moreover, $\Delta = 0$ if and only if g = 0.

We expect further that we can classify somehow (V, L)'s with small Δ and g.

2. First of all we have the following

Theorem. $\Delta(V, L) \ge 0$ for any quasi-polarized variety. Moreover, if $\Delta = 0$, there are a polarized variety (W, H) and a birational morphism $f: V \rightarrow W$ such that $L = f^*H$ and $\Delta(W, H) = 0$.

We have a complete classification of polarized varieties of Δ -genus zero (cf. [1]). In particular g(W, H) = 0 and H is very ample. Hence g(V, L) = 0 and Bs $|L| = \emptyset$ if $\Delta(V, L) = 0$.

3. From now on, we assume char $(\Re)=0$, since we need vanishing theorems of Kodaira-Kawamata-Viehweg type. Using the above theorem we obtain the following

Theorem. Let (V, L) be a normal quasi-polarized variety with dim V = n. Suppose that $h^n(V, -tL) = 0$ for any t such that $0 < t \le n$. Then there is a birational morphism $f: V \to \mathbf{P}^n$ such that $L = f^*\mathcal{O}(1)$.

4. Next we improve results in [3]. An element of $Pic(V) \otimes Q$ is called a *Q*-bundle on *V*. We define *Q*-valued intersection numbers of *Q*-bundles and the nefness of them in the natural way.

Let $\pi: M \to V$ be a desingularization of a normal variety V and set $S = \{x \in V | \dim \pi^{-1}(x) > 0\}$ and $E = \pi^{-1}(S)$. Then π is said to be nice if E is a

divisor having no singularity other than simple normal crossings. Thus $E = \sum E_i$ and each prime component E_i is smooth.

V is said to have only log-terminal singularities if it is normal and there is a nice desingularization $\pi: M \to V$ such that $K = \pi^* \omega + \sum a_i E_i$ for some Q-bundle ω on V and some rational numbers a_i with $a_i > -1$, where K is the canonical bundle of M. Since E_i 's are π -exceptional, this implies that ω corresponds to the canonical sheaf of V and hence V is Q-Gorenstein, which means, some positive multiple of a canonical Weil divisor of V is Cartier. If furthermore $a_i \ge 0$ (resp. $a_i > 0$) for every *i*, then V has only canonical (resp. terminal) singularities. Note that log-terminal singularities are rational (cf. [5; § 1-3]).

We say that V is Gorenstein in codimension k if there is a subset X of V such that $\operatorname{codim} X > k$ and V - X has only Gorenstein singularities.

Theorem (compare [3; Theorem 2]). Let (V, L) be a polarized variety of dimension n having only log-terminal singularities. Suppose further that V is Gorenstein in codimension 2. Then $\omega + (n-1)L$ is nef unless $(V, L) \simeq (\mathbf{P}^n, \mathcal{O}(1)), (\mathbf{P}^2, \mathcal{O}(2)),$ a scroll over a smooth curve, or V is a (possibly singular) hyperquadric in \mathbf{P}^{n+1} with $L = \mathcal{O}(1)$.

Here, (V, L) is said to be a *scroll* over C if there is a vector bundle \mathcal{E} on C such that $V \simeq P_c(\mathcal{E})$ with $L = \mathcal{O}(1)$. Note that V is Gorenstein in codimension 2 if it has only canonical singularities.

Corollary. Let (V, L) be as in the theorem. Then $g(V, L) \ge 0$. Moreover g=0 implies $\Delta(V, L)=0$.

Corollary. Let (V, L) be as in the theorem and suppose g(V, L)=1. Then $\omega = (1-n)L$ unless (V, L) is a scroll over a smooth elliptic curve.

5. When $B_S|L| = \emptyset$, the nefness of $\omega + tL$ for t > 0 can be proved occasionally by induction on n. This approach was used by Sommese effectively in various papers. The theorem below improves upon a result in [7; (2.1)] and will be useful in this method.

Theorem. Let A be an irreducible reduced ample Cartier divisor on a normal Q-Gorenstein variety V. Suppose that V - X has only log-terminal singularities for some finite set X, the double dual of $\omega^{\otimes m}$ is invertible in a neighborhood of A for some positive integer m and that $(\omega + tA)_A$ is nef for some $t \ge 2 - m^{-1}$. Then $\omega + tA$ is nef on V unless $(V, \mathcal{O}(A))$ is a scroll over a smooth curve with dim V = 2.

6. Here we assume $n = \dim V \leq 3$, since we need Mori's flip theorem in dimension 3 (cf. [6]).

We say that quasi-polarized varieties (V_1, L_1) and (V_2, L_2) are birationally equivalent if there is a variety X together with birational morphisms $f_i: X \rightarrow V_i$ such that $f_1^*L_1 = f_2^*L_2$.

Theorem. Let (V, L) be a quasi-polarized variety with $n = \dim V \leq 3$. Then there is a quasi-polarized variety (V', L') which is birationally equivalent to (V, L), has only **Q**-factorial terminal singularities, and further satisfies one of the following conditions:

- 1) $\omega' + (n-1)L'$ is nef for the canonical sheaf ω' of V'.
- 2) $\Delta(V',L')=0.$
- 3) (V', L') is a scroll over a smooth curve.

Here Q-factorial means that every Weil divisor on V' is a rational multiple of a Cartier divisor.

Corollary. $g(V, L) \ge 0$ for any quasi-polarized variety of dimension ≤ 3 . Moreover, g=0 implies $\Delta(V, L)=0$ if V is normal.

Corollary. Suppose further that g(V, L) = 1 and V is normal. Then $\omega' = (1-n)L'$ or (V', L') is a scroll over an elliptic curve, where (V', L') is as in the theorem.

These results will follow from the Flip conjecture in higher dimension too.

References

- T. Fujita: On polarized varieties of small *A*-genera. Tôhoku Math. J., 34, 319-341 (1982).
- [2] ——: Semipositive line bundles. J. Fac. Sci. Univ. of Tokyo, 30, 353-378 (1983).
- [3] —: On polarized manifolds whose adjoint bundles are not semipositive. Algebraic Geometry Sendai 1985. Advanced Studies in Pure Math., Kinokuniya, 10, 167-178 (1987).
- [4] ——: On quasi-polarized varieties (in preparation).
- [5] Y. Kawamata, K. Matsuda, and K. Matsuki: Introduction to the minimal model problem. Algebraic Geometry Sendai 1985. Advanced Studies in Pure Math., Kinokuniya, 10, 283-360 (1987).
- [6] S. Mori: Flip theorem and the existence of minimal models for threefolds (preprint).
- [7] A. J. Sommese: On the adjunction theoretic structure of projective varieties. Complex Analysis and Algebraic Geometry. Lecture Notes in Math., vol. 1194, Springer, pp. 175-213 (1986).