20. Tightness Property for Symmetric Diffusion Processes

By Masayoshi TAKEDA Department of Mathematics, Faculty of Science, Osaka University

(Communicated by Kôsaku YOSIDA, M. J. A., March 14, 1988)

§1. Introduction. Let \mathcal{E}^n be a sequence of closable symmetric forms on $L^2(\mathbb{R}^a, m_n)$ with symmetric non-negative definite (in i, j) measurable coefficients $a_{i,j}^n$:

$$\mathcal{E}^{n}(f,g) = \frac{1}{2} \sum_{i,j=1}^{d} \int_{\mathbb{R}^{d}} a_{ij}^{n}(x) \frac{\partial f}{\partial x_{i}}(x) \frac{\partial g}{\partial x_{j}}(x) dm_{n}$$
$$\mathcal{D}[\mathcal{E}^{n}] = C_{0}^{\infty}(\mathbb{R}^{d})$$

where m_n are everywhere dense positive Radon measures and $C_0^{\infty}(\mathbb{R}^d)$ is the space of infinitely differentiable functions with compact support. We assume that there exists a positive constant c such that

$$\sup_{n} \sum_{i,j=1}^{d} a_{ij}^{n}(x) \xi_{i} \xi_{j} \leq c |\xi|^{2}$$

for all x and $\xi \in \mathbb{R}^{d}$. Set $\mathcal{E}_{1}^{n}(f,g) = \mathcal{E}^{n}(f,g) + (f,g)_{m_{n}}$ and denote the \mathcal{E}_{1}^{n} closure of C_{0}^{∞} by \mathcal{P}^{n} . Then we have a sequence of regular Dirichlet spaces $(\mathcal{E}^{n}, \mathcal{P}^{n})$ on $L^{2}(\mathbb{R}^{d}, m_{n})$ and symmetric diffusion processes $\mathbb{M}^{n} = (P_{x}^{n}, X_{t})$ associated with $(\mathcal{E}^{n}, \mathcal{P}^{n})$ (see [3]).

For the probability measure μ_n on \mathbb{R}^d , we define the probability measure $P_{\mu_n}^n$ on $C([0,\infty))$ as $P_{\nu_n}^n(\cdot) = \int P_x^n(\cdot) d\mu_n$, where $C([0,\infty))$ is the space of all continuous functions from $[0,\infty)$ into \mathbb{R}^d . We are concerned with the problem of finding conditions for a sequence $\{P_{\mu_n}^n\}$ to be tight.

§2. Statement of theorem. We consider the following conditions.

Condition 1. Diffusion processes M^n are conservative.

Condition 2. i) $\sup m_n(K) < \infty$ for any compact set K

ii)
$$\mu_n = \phi_n dm_n$$
 and $\sup \|\phi_n\|_{\infty} < \infty$

iii) $\{\mu_n\}$ is tight

Condition 3. For any T > 0 and R > 0

$$\sup_{n}\sum_{k=0}^{\infty}m_{n}(T_{R+k})l^{1/2}\left(\frac{k}{\sqrt{dcT}}\right)<\infty$$

where

$$T_p = \{x \in \mathbf{R}^a ; p \leq |x| < p+1\} \text{ and } l(a) = rac{1}{\sqrt{2\pi}} \int_a^\infty e^{-u^{2}/2} du du$$

Then, we have

Theorem. Under Conditions 1, 2 and 3, the sequence of probability measure $\{P_{\mu_n}^n\}$ is tight.

Remark 1. Under Condition 1 and Condition 2-i), ii), Lyons-Zheng [4]

No. 3]

have proved that $\{P_{\mu_n}^n\}$ is tight as a sequence of probability measures on $D([0, \infty))$, the space of all right continuous functions with left-hand limits. But they assumed that $D([0, \infty))$ is endowed with pseudo-path topology weaker than Skorohod's one.

Remark 2. Consider the case that the measure m_n is absolutely continuous with respect to Lebesgue measure, say $m_n = \Psi_n dx$, and let

$$\overline{\Psi}_{n}(r) = \int_{S^{d-1}} \Psi_{n}(r,\sigma) d\sigma, \quad \text{for } r > 0$$

where $d\sigma$ is the uniform measure on S^{d-1} . If there exists a positive constant ε such that

$$\sup \overline{\Psi}_n(r) < e^{r^{2-\varepsilon}},$$

then Condition 3 is fulfilled.

Remark 3. In Albeverio-Høegh-Krohn-Streit [1] and Albeverio-Kusuoka-Streit [2], the convergence of finite dimensional distribution of $P_{\mu_n}^n$ was investigated in case that Dirichlet forms $(\mathcal{C}^n, \mathcal{P}^n)$ are energy forms. In some of their examples we can check our conditions and conclude the weak convergence.

§3. Outline of the proof of theorem. Set $P_{m_n}^n = \int P_x^n dm_n$. Then, $P_{m_n}^n$ is a σ -finite measure on $C([0, \infty))$.

Lemma 1. For Borel sets A and $B \subset \mathbb{R}^d$

$$P_{m_n}^n[X_0 \in A, X_T \in B] \leq 4d(m_n(A) + m_n(B)) \cdot l\left(\frac{\rho(A, B)}{\sqrt{cT}}\right)$$

where

$$\rho(A, B) = \inf \{ \rho(x, y) | x \in A, y \in B \} (\rho(x, y) = \max_{1 \le i \le d} |x^i - y^i|).$$

By using this lemma, we get the following inequality. Lemma 2.

$$\begin{split} P_{\mu_{n}}^{n}[\sup_{\substack{0 \leq s, t \leq T \\ |t-s| \leq h}} \rho(X_{t}, X_{s}) > \delta] &\leq d \cdot P^{w}[\sup_{\substack{0 \leq s, t \leq cT \\ |t-s| \leq ch}} |B_{t} - B_{s}| > \delta]^{1/2} \\ &\cdot \left\{ \mu_{n}(B_{R}) + \|\phi_{n}\|_{\infty}(m_{n}(B_{R}) + 2\sqrt{d}(1 + m_{n}(B_{R})^{1/2}) \\ &\cdot \sum_{k=0}^{\infty} (1 + m_{n}(T_{R+k})) l^{1/2} \left(\frac{k}{\sqrt{dcT}}\right) \right\} + \mu_{n}(B_{R}^{c}), \end{split}$$

where $B_R = \{x \in \mathbb{R}^d ; |x| \leq R\}$ and P^w is 1-dimensional Wiener measure.

By Lemma 2, Condition 2 and Condition 3, it holds that for any
$$T>0$$

$$\lim_{h \downarrow 0} \sup_{n} P_{\mu_n}^n [\sup_{0 \le s, t \le T \atop |t-s| \le h} |X_t - X_s| > \delta] = 0$$

and we obtain the theorem.

For the proof of Lemma 1 and Lemma 2, we use the fact that the functional $X_t^i - X_0^i (0 \le t \le T, 1 \le i \le d)$ can be written as the sum of a (P_m, \mathcal{P}_t) -local martingale and a (P_m, \mathcal{Q}_t) -one. Here \mathcal{P}_t and \mathcal{Q}_t are σ -field generated by $\{X_t; 0 \le s \le t\}$ and $\{X_{T-s}; 0 \le s \le t\}$ respectively (see [4]).

M. TAKEDA

References

- [1] S. Albeverio, R. Høegh-Krohn, and L. Streit: Regularization of Hamiltonians and processes. J. Math. Phys., 21, 1636-1642 (1980).
- [2] S. Albeverio, S. Kusuoka, and L. Streit: Convergence of Dirichlet forms and associated Schrödinger operators. J. Funct. Anal., 68, 130-148 (1986).
- [3] M. Fukushima: Dirichlet Forms and Markov Processes. Kodansha and North Holland (1980).
- [4] T. Lyons and W. A. Zheng: Crossing estimate for canonical process on a Dirichlet space and a tightness result (preprint).