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1. Introduction. Let ’n be a sequence of closable symmetric forms
on L(R, ran) with symmetric non-negative definite (in i, ]) measurable
coefficients a.z,j

1 ; a(x) 3f (x) 3g (x)dm n(f,

C (R )
where m are everywhere dense positive Radon measures and C(R) is the
space o infinitely differentiable unctions with compact support. We
assume that there exists a positive constaat c such that

d

sup aS(x)Ac]
i,j =1

2or all x and e R. Set (f, g)=(f, g)+ (f, g) and denote the -closure of C by . Then we have a sequence o regular Dirichlet spaces
(,) on L(R, m) and symmetric diffusion processes M=(P, Xt) as-
sociated with (, 9) (see [3]).

For the probability measure n on R, we define the probability mesure

C([0, )) s P,(.)=[P(.)dp, where C([0, )) is the space of 11P$. on

continuous unctions from [0, ) into R. We are concerned with the
problem of finding conditions or a sequence {P$.) to be tight.

2. Statement of theorem. We consider the following conditions.
Condition 1. Diffusion processes M are conservative.
Condition 2. i) sup m,(K) for any compact set K

ii) p,=dm and sup]]n]]

iii) {Zn) is tight
Condition 3. For any T0 and R0

su m(T,)l/

where
1 J m

Then, we h,ve

Theorem. Under Conditions 1,2 and 3, the sequence of probability

measure {P$.} is tight.

Remark 1. Under Condition 1 and Condition 2-i), ii), Lyons-Zheng [4]
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have proved that {PSi} is tight as a sequence of probability measures on
D([0, c)), the space of all right continuous functions with left-hand limits.
But they assumed that D([0, c)) is endowed with pseudo-path topology
weaker than Skorohod’s one.

Remark 2. Consider the case that the measure m is absolutely con-
tinuous with respect to Lebesgue measure, say m=dx, and let

(r) (r, )d, or r>0
Sd-

where da is the uniform measure on S-. If there exists a positive constant
such that

sup (r) e-,
then Condition 3 is fulfilled.

RemarkS. In Albeverio-Hoegh-Krohn-Streit [1] and Albeverio-
Kusuoka-Streit [2], the convergence of finite dimensional distribution of
P was investigated in case that Dirichlet forms ( n)are energy ormsn

In some of their examples we can check our conditions and conclude the
weak convergence.

Outline of the proof of theorem. Set pn =[P dmn. Then,

P is a a-finite measure on C([0, ))mn

Lemma 1. For Borel sets A and BR

P [X0 e A Xr e B]<4d(mn(A)+m(B)).I(P(A’B))
where

p(A, B)= in {p(x, y) x e A, y e B}(p(x, y)= max x-y ).

By using this lemma, we get the following inequality.
Lemma 2.

PSi[ sup p(Xt, X)>3]d.P[ sup Bt--B>]/
Os, tT Os, tcT
It-sl It-slc

{Z(B)+ I(m(B)+2 d (1+m(B)/)

(1+mn(T ))l’/
=0

, +z(B),
where B={ e R* [IR} P is 1-dimensiona Wiener measure.

By Lemma 2, Condition 2 and Condition 3, i holds ha for any
lira sup P.[ sup X,--X]>] 0

and we obtain the theorem.
For the proo of Lemma 1 and Lemma 2, we use the fact that the

functional X-X (0 t T, 1i d) can be written as the sum of a (P, )-
local martingale and a (P, )-one. Here and are a-field generated
by (Xt 0st} and (Xr_ 0st} respectively (see [4]).
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