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1. Introduction. The purpose of this pper is to investigate algebroid
solutions of some binomial differential equations in the complex plane with
the aid of the Nevanlinna theory of meromorphic or algebroid functions.

Let a0, ., a b0, ., b be entire functions without common zero and
put

p

P(z,w)= awj, Q(z, w)-- bw (ap.bq:=/=O).
=o k=o

We consider the differential equation (D. E.)"
( 1 ) (w’) P(z, w) / Q(z, w),
where n is an integer. We suppose that this equation is irreducible over
the set of meromorphic unctions in Izloo and that the D. E. (1) has
nonconstant ,-valued algebroid solution w=w(z) in Iz]

Definition. We say that w is admissible when
T(r,a/bq)=o(T(r, w)) (O=]=p) and T(r, b/bq)=o(T(r, w)) (0<=kq--1)
s r--oo, possibly outside a set o finite linear measure.

For example, when all a and b are polynomial, a transcendental
algebroid solution o2 the D. E. (1) is admissible.

More than fi2ty years ago, K. Yosida ([11]) gave several results on
algebroid solutions o the D. E. (1) when all a and b are polynomial. The
ollowings are some o2 them.

Theorem A. When all a and b are polynomial, w is of finite order
and if w is transcendental, max {p, q+ 2n} 2n,.

There are generalizations of this theorem ([1], [3], [5], [8] etc.).
As a special case o a result o2 Y. He and X. Xiao ([3]), we have
Theorem B. If w is admissible, pn+ q+n, lim sup N(r, w) / T(r, w).

Recently, J. von Rieth ([6]) has studied the D. E. (1) based on K.
Yosida’s paper ([11]) and given some interesting results. The ollowing
is one o them.

Theorem Co When all a and b are polynomial, if w is a transcen-
dental solution with at most a finite number of poles, it must be n

We note that in the case o2 Theorem C, it holds that n+ q=p according
to Theorem B.

In this pper, we shall give some results on the solution o the D. E. (1)
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in connection with these theorems. We denote by E a subset of [0, c) or
which means E c and by K a constant. E or K does n.ot always mean the
same one whenever they will appear in the ollowing. Further, the term
"algebroid" will mean algebroid in the complex plane. We use the standard
notation of the Nevanlinna theory o.f meromorphc functions ([2]) or alge-
broid unctions ([7], [9], [10]).

The author is deeply grateful to Professor Ilpo Laine for his help and
advice.

2. Lemmas. In this section, we shall give two lemmas or later use.
Lemma 1. Let v be a transcendental algebroid function such that v

and v’ have at most a finite number of poles. Then, for some positive

constants C and C, it holds that
M(r, v) C+ CrM(r, v’) (r E),

where M(r, v) max Iv(z) ([6]).

Lemma 2. Let g be a transcendental entire function. Then,
M(r, g’)<=-{M(r, g)} (r e E) ([4]).

:. Theorems. Let w=w(z) be a nonconstant,-valued algebroid solu-
tion of the D. E. (1). We shall give some results on w in this section. We
rewrite (1) as follows"
( 2 ) Q(z, W)(w’)n=P(Z, w).

Theorem 1. I) When p=n+q, the poles of w are contained in the
set of zeros of b q.

II) When p n+ q,
N(r, w)

_
KN(r, 1/bq).

Proof. Let c be a pole of w of order r. Then, w can be expanded
near c as ollows"

W(Z) (Z C)-v/’R((z C)1/’)
where 1<_, and R(t) is a regular power series in t for which R(0):/:0.

I) Suppose that c is not a zero of bq. Then, for w=w(z) the order
of pole of the left-hand side of (2) at z=c is equal to (n+ q)r+n and that
of the right-hand side is not greater than pr. This gives us the inequality
(n+q)r+n<=pr, which reduces to

On2(p-n-q)r=O.
This is a contradiction.

II) Let s be the order of zero o.f b at z-c.

a) When the order of pole of bqwq(w’) is not equal to that of other
terms of the left-hand side o (2) at z--c, we have

(n+q)r--s+npr,
which reduces to rg(s-n)/(n+q-p).

b) When the order o pole o bqwq(w’) is equal to that of some other
terms o. the left-hand side of (2) at z-c, let bw(w’) be one of them, then
we have

(n+ q)r-- s,+ n, <= (n/ k)r+ n,
which reduces to r<=s,/(q-k) as qk.
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From a) and b) we obtain our inequality.
Applying the method used in [6] to prove Theorem C, we can prove

the following theorem.
Theorem 2. Suppose that pn+q and that bq is a polynomial. Then,

we have the folio.wing inequality for r e E:
P

min {n,n+q--p} log M(r,w)=, log M(r,a)
j=0

q-1

+K log M(r, b)+ O(log r)

Proof. I w is algebraic, there is nothing to prove. ThereJore, we
suppose that w is transcendental and M(r, w)>= 1 (r e E). Let S be the set
oJ zeros oJ bq. Then, S is a finite set and the poles oJ w are contained in
S by Theorem 1, I). As w is a solution oJ the D. E. (2), it satisfies
( 3 ) b{Q(z, w)w’}=P(z, w)Q(z, w)-,
where Q(z, w) Q(z, w) / bq. Put for w=w(z)

q-1

U(z)=wq/l/(q+ 1)+] (b/b)w/I/(k+ 1)
k=O

and

then

q-1

V(z)= (b/b)’w/l/(k+ 1),
k=O

( 4 ) Q(z, w)w’= U’(z)-V(z)
and the poles o U(z) are contained in S. Further, the poles of U’(z) are
also contained in S. In act, substituting (4) into (3), we have
( 5 ) b{U’(z)--V(z)}=P(z, w)Q(z, w)-and suppose that U’(z) has a pole at z=c outside S. Then, the left-hand
side of (5) has a pole at z=c, but the right-hand side o.f (5) has no pole at
z=c, which is a contradiction.

As S is a finite set, we can apply Lemma I to U"
( 6 ) M(r, U) C+ C:rM(r, U’) (r E).

Let z be a point such that
M(r, U’)=[U’(z)[, Iz[=r (r e E).

Then,
( 7 ) {M(r, U’)--M(r, V)}n =<] U’(zr)--Y(zr)lnM(r, pen-I/b).
By using Lemma 2 if necessary, we have

( 8 ) M(r, V)<=KM(r, w) M(r, b,) r (r e E),

where d is .the degree of b. Further,

{ }{ M(r, b,)( 9 ) M(r, PQ’-’/b;)KM(r, w)"+’(’-’. M(r, a,) /Irn"=0 =0

and rom the definition of U

(I0) M(r, U)M(r, w)/’/(q+ 1)-KM(r, w) {-o M(r, b)},Jr’.
From (6)-(10) we obtMn Jor r E

alln( q._., } (n-1)/n

M(r,w)’"(n/-’)/’K M(r,a:)l oM(r,b)j=O /
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4-K I= M(r, b)+ {__1 M(r, b)}2] /r,
which reduces to our inequality by calculating log+ o the both sides.

Theorem 3. When pn+q, if all aj and b are polynomial, any
algebroid solution w=w(z) of the D. E. (1) is algebraic.

Proof. By Theorems 1 and 2, we obtain
T(r, w)= O(log r) (r e E),

which shows that w is algebraic.
Here, we give two examples which show that Theorem 3 does not hold

when p>n+q.
Example 1. The D. E. (w’)2= (-w44-1)/4w has a transcendental alge-

broid solution w=(sin z)m which has no pole. In this case, p--n+ q.
Example 2. Let f(z) be a Weierstrass’ p-unction which stisfies

(f’)2-- 4(f-- el)(f e)(f e3)
where e+e+e=0 and eee=/=0. Then, the algebroid function w=w(z)
defined by w=f(z), which is transcendental, satisfies the D. E.

(w’)= (w- e)(w e)(w- e) /w.
In this case, p n4- q.

Finally, as a generalization o Gackstatter-Laine’s conjecture ([1])
Theorem 3 suggests to us the following

Conecture. When pn+q, any algebroid solution o.f the D. E. (1)
would not be admissible.
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