16. Class Number One Problem for Real Quadratic Fields

(The conjecture of Gauss)

By Hideo Yokoi
Department of Mathematics, College of General Education, Nagoya University
(Communicated by Shokichi Iyanaga, m. J. A., Feb. 12, 1988)

The following conjecture of Gauss on the class number of real quadratic fields is well known :
$\left(G_{1}\right)$: There exist infinitely many real quadratic fields of class number one, or more precisely
$\left(G_{2}\right)$: There exist infinitely many real quadratic fields $Q(\sqrt{p})$ of class number one such that p is prime congruent to $1 \bmod 4$.

In relation to this conjecture of Gauss, the following conjecture of S. Chowla and analogous conjecture of Yokoi are known ${ }^{17}$:
$\left(C_{1}\right)$ (S. Chowla): Let D be a square-free rational integer of the form $D=4 m^{2}+1$ for natural number m. Then, there exist exactly 6 real quadratic fields $Q(\sqrt{ } D)$ of class number one, i.e. $\quad(D, m)=(5,1),(17,2),(37,3),(101,5),(197,7),(677,13)$.
$\left(C_{2}\right)$ (H. Yokoi) : Let D be a square-free rational integer of the form $D=m^{2}+4$ for natural number m. Then, there exist exactly 6 real quadratic fields $Q(\sqrt{D})$ of class number one,
i.e. $\quad(D, m)=(5,1),(13,3),(29,5),(53,7),(173,13),(293,17)$.

Concerning the conjectures $\left(C_{1}\right),\left(C_{2}\right)$, R. A. Mollin says ${ }^{2)}$: Conjecture $\left(C_{1}\right)$ was proved under the assumption of the generalized Riemann hypothesis in [6], and conjecture $\left(C_{2}\right)$ also can be proved under the same assumption in a similar way.

On the other hand, H. K. Kim, M. G. Leu and T. Ono ${ }^{3}$ recently proved that at least one of the two conjectures $\left(C_{1}\right),\left(C_{2}\right)$ is true and that for the other case there are at most 7 quadratic fields $Q(\sqrt{ } D)$ of class number one by using results of Tatuzawa [1], Yokoi [3] and by the help of a computer.

Let $\varepsilon_{D}=(1 / 2)\left(t_{D}+u_{D} \sqrt{D}\right)>1$ be the fundamental unit of the real quadratic field $Q(\sqrt{D})$ for a positive square-free integer D. Then, $\left(C_{1}\right)$ is a conjecture on real quadratic fields $Q(\sqrt{D})$ with $u_{D}=2$, and $\left(C_{2}\right)$ is a conjecture on real quadratic fields $Q(\sqrt{ } D)$ with $u_{D}=1$.

In this paper, we shall prove first the following theorem on real

[^0]quadratic fields $Q(\sqrt{ } \bar{D})$ with general u_{D} in the case of prime D congruent to $1 \bmod 4$:

Theorem 1. Put

$$
U=\left\{2^{\delta} \prod_{i} p_{i}^{e_{i}} ; \delta=0 \text { or } 1, e_{i} \geqq 1, \text { prime } p_{i} \equiv 1 \text { (4) }\right\}
$$

Then, for any fixed u in U, there exists only a finite number of real quadratic fields $Q(\sqrt{ } \bar{p})$ of class number one such that p is prime congruent to $1 \bmod 4$ and $u_{p}=u$ for the fundamental unit $\varepsilon_{p}=(1 / 2)\left(t_{p}+u_{p} \sqrt{ } p\right)>1$ of $Q(\sqrt{p})$.

To prove this theorem, we need two lemmas.
Lemma 1 (Tatuzawa) ${ }^{4}$. For any positive number c satisfying $1 / 2>c$ >0, let d be any positive integer such that $d \geqq \max \left(e^{1 / c}, e^{11.2}\right)$. Moreover, let χ be any non-principal primitive real character to modulus d, and $L(s, \chi)$ be the corresponding L-series.

Then, $L(1, \chi)>0.655\left(c / d^{c}\right)$ holds with one possible exception.
Lemma 2. Let $\varepsilon_{d}=(1 / 2)(t+u \sqrt{d})>1$ be the fundamental unit of a real quadratic field $Q(\sqrt{ } \bar{d})$. Then, in the case $N \varepsilon_{d}=+1$, it holds $t>\varepsilon_{d}>u \sqrt{ } d$, and in the case $N \varepsilon_{d}=-1$, it holds $t<\varepsilon_{d}<u \sqrt{d}$.

Proof. Since $N \varepsilon_{d}= \pm 1$ implies $t^{2}-d u^{2}= \pm 4$, in the case $N \varepsilon_{d}=1$, we get at once

$$
t>\varepsilon_{d}=\frac{1}{2}(t+u \sqrt{d})>u \sqrt{d}
$$

from $t=\sqrt{d u^{2}+4}>u \sqrt{d}$. Similarly, in the case $N \varepsilon_{d}=-1$, we get

$$
t<\varepsilon_{d}=\frac{1}{2}(t+u \sqrt{d})<u \sqrt{d}
$$

from $t=\sqrt{d u^{2}-4}<u \sqrt{d}$.
Proof of Theorem. If we put $c=1 / m$ for any m satisfying $m \geqq 11.2$, then $\max \left(e^{1 / c}, e^{11.2}\right)=e^{m}$ holds, and hence it follows from Lemma 1 that

$$
L\left(1, \chi_{p}\right)>\frac{0.655}{m} p^{-1 / m},
$$

where χ_{p} is the Kronecker character belonging to the quadratic field $Q(\sqrt{p})$ and $L\left(s, \chi_{p}\right)$ is the corresponding L-series.

On the other hand, since $N \varepsilon_{p}=-1$ holds for prime $p \equiv 1(\bmod 4)$, it follows from Dirichlet's class number formula and Lemma 2 that for the class number $h(p)$ of $Q(\sqrt{ } p)$

$$
\begin{aligned}
h(p) & =\frac{\sqrt{p}}{2 \log \varepsilon_{p}} L\left(1, \chi_{p}\right) \\
& >\frac{\sqrt{p}}{2 \log u_{p} \sqrt{p}} \frac{0.655}{m} p^{-1 / m} \\
& =\frac{0.655}{m} \frac{1}{2 \log u_{p}+\log p} p^{(m-2) / 2 m} .
\end{aligned}
$$

Here, if we put

[^1]$$
f(x)=\frac{x^{(m-2) / 2 m}}{2 \log u+\log x},
$$
then $(m-2) / 2 m>0$ implies $\lim _{x \rightarrow \infty} f(x)=\infty$.
Hence, there exists only a finite number of prime p congruent to $1 \bmod$ 4 such that $u_{p}=u$ and $h(p)=1$ hold. Thus our proof of theorem 1 was completed.

As an application of this theorem, we can prove easily the following theorem:

Theorem 2. The conjecture $\left(G_{2}\right)$ of Gauss is equivalent to the following conjecture :
$\left(G_{3}\right)$: For any given natural number u_{0}, there exists at least one real quadratic field $Q(\sqrt{p})$ of class number one such that p is prime congruent to $1 \bmod 4$ and $u_{p} \geqq u_{0}$ for the fundamental unit $\varepsilon_{p}=(1 / 2)\left(t_{p}+u_{p} \sqrt{ } p\right)>1$ of $Q(\sqrt{p})$.

Proof. From $-4=4 N \varepsilon_{p}=t_{p}^{2}-p u_{p}^{2}$, we get easily that for any odd prime factor q of u_{p} it holds $(-1 / q)=1$, where $(-1 / q)$ means Legendre-Jacobi symbol. Hence, since $q \equiv 1(\bmod 4)$, we know $u_{p} \in U$. Therefore, by Theorem 1, it is clear that $\left(G_{2}\right)$ implies $\left(G_{3}\right)$.

On the other hand, since it is trivial that $\left(G_{3}\right)$ implies $\left(G_{2}\right)$, our proof of theorem 2 was completed.

References

[1] T. Tatuzawa: On a theorem of Siegel. Japanese J. Math., 21, 163-178 (1951).
[2] S. Chowla and J. Friedlander: Class numbers and quadratic residues. Glasgow Math. J., 17, 47-52 (1976).
[3] H. Yokoi: Class-number one problem for certain kind of real quadratic fields. Proc. Int. Conf. on Class Numbers and Fundamental Units of Algebraic Number Fields, 24-28 June, Katata, Japan, pp. 125-137 (1986).
[4] R. A. Mollin: Class number one criteria for real quadratic fields. I. Proc. Japan Acad., 63A, 121-124 (1987).
[5] H. K. Kim, M. G. Leu, and T. Ono: On two conjectures on real quadratic fields. ibid., 63A, 222-224 (1987).
[6] R. A. Mollin and H. C. Williams: A conjecture of S. Chowla via the generalized Riemann hypothesis (to appear in Proc. A.M.S.).

[^0]: 1) cf. S. Chowla and J. Friedlander [2] and H. Yokoi [3].
 2) cf. R. A. Mollin [4].
 3) cf. H. K. Kim, M. G. Leu and T. Ono [5].
[^1]: 4) See Tatuzawa [1] for proofs.
