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,u+lxl ul- u= o on the Ball
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1. Introduction and results. In this paper we study the radial
solutions of the nonlinear boundary value problem

u+lxllul-u=O in 2={x[Ixl<l}R,(P)
u=0 on

where n.3, l0 and pl.
The radial solution u=u(r) of (P), where r=lx I, can be obtained as

a solution of the ollowing .ordinary differential equation

1 ) ((r-u’)’+r+n-[ul-u=O’ r e (0, 1),
u’(0) 0, u(1) 0.

By refining the phase plane method developed in [1] and [4], we can
show the 2ollowing

Theorem. If p e (1, (n+2+21)/(n--2)), for each positive integer k there
exists a unique radial solution u=u(r) of (P), such that u(O)0 and u(r)
has exactly k-1 zeros in (0, 1).

If pe [(n+2+21)/(n-2), +c), there exists .o radial solution of (P)
except the trivial one.

For /=0 and pl, Gidas-Ni-Nirenberg [3] has shown the uniqueness
o the positive radial solution o (P). When the domain is an annulus
{xla Ix b}R,/=0 and p e (1, (n+2)/(n-2)], the unique existence o a
positive radial solution of (P) is established in Ni [6]. Further, a similar
result to our theorem is obtained by Ni-Nussbaum [7] when 9 is an
annulus., e R, pl and n>_2. Also 2or our problem, Ni [5] showed the
existence of a positive radial solution o (P) or p e (1, (n/2+ 21)/(n-- 2))
applying the Mountain Pass Lemma, but did not get the uniqueness.

2. Outline of the proof of Theorem. For the moment, we consider
the initial value problem
( 2 ) (r-u’),+r+-!ul-u=O, r e (0, 1),
( 3 ) u(O)= A, u’(O)=O,
or A0, instead o the boundary value problem (1).

Following ater Chandrasekhar [1], we introduce the change o
variables
( 4 ) u(r)= Av(s), r=Bs,
where a constant B is determined as ollows. In the case I p ((n/l)/(n-2),
+c), B=((n--2--r)rA-}/(TM) with r=(2+l)/(p-1), in the case II p
=(n+l)/(n--2), B=(A-)/(/) and in the case III p e(1, (n+l)/(n-2)),
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B--- {(r+ 2--n)rA-}/(/
According to the cases I, II and III, the equation (2)is trans2ormed

respectively into the equations
( 5 ) (s-’v’)’+ (n 2)s -’1 v - ’v 0,
( 5 )
and
( 5 )m (s v’)’+ (r+2-n)rs n-1V [-V O,
while the initial condition (3) is transformed into
( 6 ) v(0)= 1, v’(0)-- 0.
Here, the boundary condition u(1)=0 corresponds to the condition v(B-)
---0.

Next we make the change of variables such as
( 7 ) w(t) sv(s), s e,
which transforms the equations (5), (5) and (5)m respectively into the
equations
( 8 ) w"+(n-2r--2)w’+(n--r--2)r(Iwl---l)w=O,
( 8 ) w"--(n--2)w’+ ]wI-w 0
and
( 8 )m w"+ (n-2r-- 2)w’+(+ 2-- n)([w 1-’ + 1)w 0.
The initial condition (6) is transformed into the condition
( 9 ) lim e-tw(t)= 1, lim e-*{e-tw(t)}’=O.

t--,- t---

The unique existence of the solution satisfying (8) and (9) follows
immediately from

Lemma 1. Let constants a and fl satisfy 0 and a)fl. Assume f"
R--R to. be C and satisfy for some za-,

f(t) O(t’/ 9, f’(t) O(t9 as t--O.
Then we have a positive T such that the problem

"-- (o+ fl)’+ofl+f() O,
lim e-t(t)-=-l, lim e-*{e-t(t)}’--O,
t-- t--

has a unique solution =(t) in (--oo, --T).
For the solution w=w(t) of (8) and (9), we put z(t)=w’(t) and trace

the orbit (= {(w(t), z(t)) oo t <: + oo } in (w, z)-ph&se plane.
First we deal with the ease I where p e ((n+ l) / (n- 2), + oo). In this

ease, the orbit ) tends to the origin along the line z--rw ]rom positive w
as t---c. Further, there is no orbit having such property other than
) ([2] ehapter 15, Theorem 6.1.). From this we know

Proposition 1. (i) For pe((n+2+21)/(n--2), +oo), the orbitF)never

meets the z-axis. It approaches to (1, 0) as t--+ c.
(ii) For p=(n+2+21)/(n-2), forms a ring which starts from the

origin along z=rw(w0) and terminates at the origin along z= --rw(w 0).
(iii) For p e ((n+l)/(n-2), (n+2+21)/(n--2)), _) goes awy from the

origin crossing the w-axis and z-axis alternately.
Here we note that for p=(n+2+21)/(n--2) the solution u=u(r) of (2)
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and (3) can be explicitly expressed as u(r)-A(I+CH/)-(-)/(+) where
C= (1/(n- 2)(n+ 1))A(+

Similarly, we also have the following
Proposition 2. For p e (1, (n+l)/(n-2)], the orbit ( behaves the same

as in Proposition 1-(iii).
Detailed proof of Lemma and Propositions will be published elsewhere.
Now we are going to see how the trace of the orbit G tells us about

the radial solution of (P). In act, in terms of the changes of variables (4)
and (7), the zeros of u correspond to that of w. Hence, i G never meets
the z-axis, the solution u=u(r) of (2) and (3) never vanishes. On the other
hand, if G goes across the z-axis at t=, the solution u=u(r) for A
determined by the relation B-=e in each case vanishes at r=l. More-
over, if meets the z-axis k--1 times for t e (-, ), the above solution
u=u(r) has just k-1 zeros in (0, 1). At this point Theorem can be
proved easily.

3. Remark. From Rellich’s identity we can show that the follow-
ing identity is valid for any solution of (P).

(dx= n+l n--2 x[u,+dx,, p+l 2

where n denotes the outward unit normal on 9. Using this identity,
we have shown the stronger result than the second part of Theorem,
that is, for p e [(n+2+ 21) / (n- 2), +), the problem (P) has only the trivial
solution.
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