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12. Asymptotic Behavior for Weak Solutions of
a Porous Media Equation”

By Kiyoshi MOCHIZUKI*) and Ryuichi SUzZUKI**)

(Communicated by Koésaku YO0SIDA, M. J. A., Feb, 12, 1988)

1. Introduction. This work concerns the asymptotic behavior for
t—oo of the solution to the initial-boundary value problem

(1) = {r(wu,+ b(t, w},, (x,t) € (0,1)Xx (0, )
( 2 ) u(O’ t)::‘[fo(t)’ u(ly t)=‘!f1(t)’ te (0) OO)
(3) u(x, 0) =u,(x), xz e (0,1).

The functions »(u), b(t, u), \,(t) (t=0,1) and u,(x) are all real, bounded and
sufficiently smooth. Moreover, we require

(A1) r(w)>0in u e (uy, u*), r(uye)=rw*)=0;

(A3)  uy <), u(B)<u*, [4i(D)|<C 5

(Ad)  (0)=124(0), 4~,(0)=12,(1) (compatibility condition);

(A5) |y, (&)—¢,}—0, sup, |b(t, w)—a(w)|—0 as t—o0 ;

(A6) |a'(w)|<Crw).

With these conditions (1) describes a diffusion of immiscible fluids in
porous media. b representing effects of both the flow and gravity terms,
in general, depends not only on % but also on t. If the flow term is
negligible, it can be given independently on ¢. In such a case, the asymptotic
behavior of solutions has been studied in [5] for a fast diffusion arising in
the filtration in a partially saturated porous media. Our purpose of this
note is to extend their method to obtain a similar result to the above
mentioned problem.

2. Results. In the following we consider the weak solution of (1)-(3)
which satisfies: 1) u(x,t) € C(@), Q=(0,1)X (0, ), u,<u(x,t)<u* for all

@, ) ¢ @ and R(u(z, t»x-—_—j“"”’”r(o)do e LL@) 5 i) u(, ) =vi(t) (1=0,1), t0;
iii) For any T>0 and g(x, t*) e CY(Q) satisfying ¢(0, t)=9(@1, t)=0,
(4) j j (R, £),+b(t, u(@, D)}g,— e, g Jdadt

=j: u(2)g(x, O)dx—ﬁ w(x, T)g(x, T)dx.

The following two theorems are already known. (See [1], [4], where
are treated the case b=0b(u). The dependence on ¢t of b is inessential for
the proof of these theorems.)

Theorem 1. (i) Assume (Al),(A3) and (A4). Then there exists a

b2l
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weak solution of (1)-(3). (ii) Assume further (A2). Then the weak solu-
tions of (1)-(3) are unique.

Theorem 2. Assume (Al) and (A2). Letu,x,t), j=1,2, betwo weak
solutions of (1)-(3) with respective data {ir,(t), ¥r,(t), u,(2)} satisfying (A3)
and (A4). Suppose that () <yu(t) (6=0,1) for all t>0 and uy,(x) <uu(x)
for all 0<x<1. Then we have u,(x, t)<u,(z,t) for all (z,t) € Q.

The stationary problem agsociated with (1)-(8) is given by
(5) frv'+a(@)Y =0 (0<x<1), v(@)=¢, (1=0, 1).

We define the weak solution to satisfy: i) v(x) e C([0, 1), u, <v(x)<u* for

all 0<x<1 and R(w(x)) € L*((0,1)); ii) v(@®)=¢, (1=0,1); iii) ﬁ {R(v(@)y

+a@@)}f(x)dx=0 for any f(x) e C'([0, 1]) satisfying f(0)= f(1)=0.

Now our main result is the following

Theorem 3. Assume (Al1)-(A6). Then as t—»co the weak solution
w(z, t) of (1)-(3) converges uniformly in x € [0,1] to the weak solution v(x)
of (5).

3. Lemmas. We prepare several lemmas under (A1)-(A6).

Lemma 4. There exists a C>0 such that for any T>1,

j :” ﬂ Rz, D). dxdt+I: (R@uz, T), ) de<C.

Proof. Our weak solution of (1)-(8) is the limit of a uniform conver-
gent sequence of approximate classical solutions. So, we can assume %
being a classical solution. Let - (x, t)=1— )yy(t)+ 24, (t). Multiply both
sides of (1) by w(z, t)— v (x, t) [R(u(x, t)),— R(y(x, t)),], and integrate by parts
on (0, )X (T—1, T+1) [(0,1) X (T’, T+1) for a suitable T—1<T'<T]. Then
we can easily obtain the above estimate. O

Ag a corollary of the above lemma we have

Lemma 5. There exists a C>0 such that

| R(u(z, 1)) — R(u(y, )| C{le—y[+|t—s["}
for any 0< 2, y<1 and t,s>1 such that |t—s| is sufficiently small.

Lemma 6. The weak solutions of (5) are unique.

Proof. We rewrite (5) as the equation of w=R(v). Then by use of
(A6) with u=v, we can show the uniqueness result (see e.g., [3], chapter
9). EI

By use of the comparison Theorem 2 and the above Lemmas 4-6, we can
follow the argument of [5] to obtain

Lemma 7. Let ,_(t) [y, ()] (=0, 1) be monotone increasing [decreas-
gl smooth functions such that

U <Py () <, () <. (D) <X, i\lfgz(t)lgc for all t>0,
Pi-(O)=uy, Y. (0)=u* and ILI}B YO =¢;.

Let u_(x,t) [u,(x, )] be the solution of (1)-(3) with b(t,w), y,(t) and wu,(x)

replaced respectively by a(w), ¥,_.(t) [v,.@®)] and u,lu*]l. Then as t—oo,

u.(x, t)—v(x) uniformly in x € [0, 1], where v(x) is the weak solution of (5).
The following lemma also follows from the comparison theorem.
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Lemma 8. Let ¢ be an arbitrary fixed positive number. Letu,_(x,t)
[u,.(x,t)] be the solution of (1) with b(t, u), v,(t) and u,(x) replaced respec-
tively by b(t+o,u), ¥, @) [¥,.@)] and wu,lu*]. Then we have u,_(x,t)<
wx, t+o)<u,,(x,t) for any (z,t) € Q.

Lemma 9. There exists a C>0 such that for any o, T >0,

[ [ 1R @, 09— Raw. (e, t0F ot
<Ce° sup |b(t+a, w)—a(w)|.

t>0,u

Proof (cf., [T). Put w=wu,—u,.. Then for any test function g(x,t)
such that g(x, T+4+1)=0, we have noting (4),

(6) f J w{g,+ B, )g..— a(x, t)g,}dwdt

+ j j (b 40, u,.)—au, )} g.dedt =0,
0 0

where for each function h(w), h(x, t) is defined by
e,y M@, D)= R, @, D)
u, (2, t) —u,.(x, )

Consider the following backward initial-boundary value problem in Q,,
=(0,1)x (0, T+~1): .

9.+{k@x,)+1/n}g,,—dx, t)g, =R, hw, (,1) € Qr.,
(7) {g(O,t):g(l,t):O, te(0,T+1)

g(x, T+1)=0, xze(0,1).
This is solvable in the Sobolev space W>*(Qr,,), ¢>1, with norm

2
Hfllé%m=j§;0||8£fllq,q,+l+llatfllq,em,

where || ||, q,,, is the usual L%norm in Qr,, ([6], chapter IV). Let g.(x, 1)
be the solution of (7). Multiply by g, ., on the both sides of the differential
equation and integrate by parts on Q,,,. Then, applying the Gronwall
inequality, we easily have for any 0<t<T+1,

f 2 (2, t)d:c+r“ f (B+1/n)gk... dedt < Ce°T,
0 0 0
where C>>0 is independent of » and 7. In (6) we put g=g, and let n—oo.
Then using this inequality, we conclude
+1 M o
r I w'R dadt< Ce” sup |b(t+o, u)—a(w)|.
0 0

t>0,u

Since | R(u,)— R(u,.) < (wR)*< Cw*R, this proves the lemma. O

4. Proof of Theorem 3. Noting (A5), we see that there exists a
monotone decreasing continuous function ¢(¢) >0 such that ¢(¢)—0 as g—o0
and sup,s,.|b(t+o, w)—a(w)|<eo). With this ¢(c) we can say that for any
sufficiently large ¢ there exists a o(r)<r such that e®“ " =e(o(c))"*. As
is easily seen, ¢(r)—>o0 and r—g(r)—>o0 as t—co. We put T=T(r)=1—0(r)
and ¢=o(r) in Lemma 9. Then
(8) r o ﬁ | R, (2, 8))— Rty o (, ) devdlt

T (1)

< CeT® sup |b(t+0a(r), u) — a(w)|< Ce(a(r))”*—0
t20,u
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as r—o00. On the other hand, the set of functions

(9) {R(u,(x, s+ T(2)— R, . (2, s+ T(2))) ; >1}

is uniformly bounded and equi-continuous in (z,s) € [0,1]x [0, 1] (Lemma

5). Combining the Ascoli-Arzela theorem and (8), we see that as r— oo,

R(u.(x, s+ T(2)))— R(Uy ey (x, 84+ T(2)))—0 uniformly in (x,s). Further,

since R-!' is continuous, letting s=0 and using Lemma 7, we see that

Uy (e (X, T'(2))—v(x) uniformly in x € [0, 1] as -—oo. This and the inequality

Uy - (@, T—0(2) <UR, ) KUy . (¥, 7—0(2))

(Lemma 8) prove the desired results. O
5. Final Remarks. Theabove argument can be applied to the problem

with n dimensional spacial variables. In this case it is not easy to verify

the Holder estimates (Lemma 5) of R(u(x,t)), which is however inessential

to apply the Ascoli-Arzela theorem. Note that in [2] is proved the uniform

continuity in @ of the function R(u(x,t)), from which the equi-continuity
of (9) follows.
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