102. On an Extension of the James-Whitehead Theorem about Sphere Bundles over Spheres ${ }^{\text {t }}$

By Hiroyasu Ishimoto
Department of Mathematics, Faculty of Science, Kanazawa University
(Communicated by Kunihiko Kodaira, m. J. A., Nov. 14, 1988)

1. Statement of results. Let W be a handlebody obtained by gluing r, q-handles to a ($p+q+1$)-disk, and let $\mathcal{H}(p+q+1, r, q)$ be the set of such handlebodies. In this paper, I announce homotopy classification theorems of the boundaries of handlebodies of $\mathscr{H}(p+q+1, r, q)$ in the following two cases:

$$
\begin{equation*}
(p, q)=(n-1, n+1) \quad(n \geq 4) \tag{1}
\end{equation*}
$$

(2)

$$
(p, q)=(n-2, n+1) \quad(n \geq 6)
$$

Such classifications are equivalent to those of simply connected closed m manifolds $M(m=p+q)$ with $H_{i}(M)=0$ except for $i=0, p, q, m$ and with the tangent bundle which is trivial on its p-skeleton (this is satisfied if $p \equiv$ $3,5,6,7 \mathrm{mod} 8$). Henceforth, manifolds are connected, smooth, and oriented, and homotopy equivalences and diffeomorphisms are orientation preserving.

There exists an invariant system ($H ; \phi, \alpha$) which determines W up to diffeomorphism (cf. [4]). Here, $H=H_{q}(W), \phi: H \times H \rightarrow Z_{2}=\pi_{q}\left(S^{p+1}\right)$ is a symmetric bilinear form, and $\alpha: H \rightarrow \pi_{q-1}\left(S O_{p+1}\right)$ is a quadratic form, which assigns, to each $x \in H \cong \pi_{q}(W)$, the characteristic element of the normal bundle of the imbedded q-sphere representing x. W is called of type 0 if $\phi=0$, of type II if $\phi(x, x)=0$ for any $x \in H$ and rank $\phi=r$, and of type $(0+$ II) if $\phi(x, x)=0$ for any $x \in H$ and $0<\operatorname{rank} \phi<r$. Note that ϕ is a homotopy invariant of ∂W by Proposition 1 of [2, II]. Our main purpose is to determine the necessary and sufficient condition for the boundaries of handlebodies to be homotopy equivalent using the invariant systems.

The following diagram is commutative up to sign :

Let $\lambda: S\left(\pi_{q-1}\left(S O_{p}\right)\right) \rightarrow \pi_{m-1}\left(S^{p}\right) / \operatorname{Im} P$ be the homomorphism defined by $\lambda(S \xi)=$ $\{J \xi\}$, which does not depend on the choice of ξ. Put $\theta=\eta_{n-1}$ if $(p, q)=$ $(n-1, n+1)(n \geq 4)$, and $\theta=\eta_{n-2}^{2}$ if $(p, q)=(n-2, n+1)(n \geq 6)$. The inclusion $\operatorname{map} i: S^{p} \rightarrow S^{p} \cup_{\theta} D^{q}$ induces the homomorphisms $i_{*}: \pi_{m-1}\left(S^{p}\right) \rightarrow \pi_{m-1}\left(S^{p} \cup_{\theta} D^{q}\right)$ and $\bar{i}_{*}: \pi_{m-1}\left(S^{p}\right) / \operatorname{Im} P \rightarrow \pi_{m-1}\left(S^{p} \cup_{\theta} D^{q}\right) / i_{*}(\operatorname{Im} P)$. We define $\bar{\lambda}: S\left(\pi_{q-1}\left(S O_{p}\right)\right) \rightarrow$ $\pi_{m-1}\left(S^{p} \cup_{\theta} D^{q}\right) / i_{*}(\operatorname{Im} P)$ by $\bar{\lambda}=\bar{i}_{*} \circ \lambda$.

Let W, W^{\prime} be the handlebodies of $\mathscr{H}(p+q+1, r, q)$ with the invariant

[^0]systems ($H ; \phi, \alpha$), ($H^{\prime} ; \phi^{\prime}, \alpha^{\prime}$) respectively, in one of the cases (1), (2). For $x \in H, \phi(x, x)=0$ implies that the normal p-sphere bundle of the imbedded q-sphere representing x admits a cross-section. So, $\alpha(x)$ belongs to $S\left(\pi_{q-1}\left(S O_{p}\right)\right) \subset \pi_{q-1}\left(S O_{p+1}\right)$.

Theorem 1. Let W, W^{\prime} be of type 0 . Then, $\partial W, \partial W^{\prime}$ are homotopy equivalent if and only if there exists an isomorphism $h: H \rightarrow H^{\prime}$ such that $\lambda \circ \alpha=\lambda \circ\left(\alpha^{\prime} \circ h\right)$.

In the above theorem, $\partial W, \partial W^{\prime}$ correspond to connected sums of $r p$ sphere bundles over q-spheres admitting cross-sections. So, it is known from Theorem 1 of [2, I] shown as an extension of the James-Whitehead Theorem [3]. We insert it to compare the following theorems with it.

Theorem 2. Let W, W^{\prime} be of type II. Then, $\partial W, \partial W^{\prime}$ are homotopy equivalent if and only if there exists an isomorphism $h: H \rightarrow H^{\prime}$ such that $\phi=\phi^{\prime} \circ(h \times h)$ and $\bar{\lambda} \circ \alpha=\bar{\lambda} \circ\left(\alpha^{\prime} \circ h\right)$.

Theorem 3. Let W, W^{\prime} be of type $(0+\mathrm{II})$. Then, $\partial W, \partial W^{\prime}$ are homotopy equivalent if and only if there exists an isomorphism $h: H \rightarrow H^{\prime}$ such that $\phi=\phi^{\prime} \circ(h \times h), \bar{\lambda} \circ \alpha=\bar{\lambda} \circ\left(\alpha^{\prime} \circ h\right)$ and furthermore there exists a direct sum decomposition $H=H_{0}+H_{1}$ orthogonal with respect to ϕ such that $\phi\left|H_{0} \times H_{0}=0, \phi\right| H_{1} \times H_{1}$ is non-singular, and $\lambda \circ \alpha=\lambda \circ\left(\alpha^{\prime} \circ h\right)$ on H_{0}.

If W is of type II or of type $(0+\mathrm{II})$, then ∂W can never be represented as a connected sum of p-sphere bundles over q-spheres even up to homotopy equivalence (cf. Lemma 1.1 of [1]). In case that there exists an element $x \in H$ such that $\phi(x, x) \neq 0, W$ is called of type I if rank $\phi=r$, of type $(0+\mathrm{I})$ if $0<\operatorname{rank} \phi<r$. Those boundaries of such handlebodies are represented as connected sums of p-sphere bundles over q-spheres, and the homotopy classification is completed in [2, III].
2. Outline of the proofs. The detailed proofs of the above theorems will appear elsewhere. Here, I outline the proof for Theorem 2 since Theorem 3 is obtained similarly.

Every $W \in \mathscr{H}(p+q+1, r, q)$ can be represented as $W=D^{m+1} \cup_{\left\{f_{i}\right\}}\left\{\cup_{i=1}^{r} D_{i}^{q}\right.$ $\left.\times D_{i}^{p+1}\right\}(m=p+q)$ so that $D_{i}^{q} \times o, i=1,2, \cdots, r$, represent the given basis $e_{1}, e_{2}, \cdots, e_{r}$ of $H \cong H_{q}\left(W, D^{m+1}\right)$. Let W be of type II. Then, there exists a basis $e_{1}, e_{2}, \cdots, e_{r}(r=2 s)$ symplectic w.r.t. ϕ (cf. Lemma 1.1 of [1]). So, W can be represented by using it. Let $K_{\phi}=\bigvee_{i=1}^{S}\left\{\left(S_{2 i-1}^{p} \cup_{\theta} D_{2 i}^{q}\right) \bigvee\left(S_{2 i}^{p} \cup_{\theta} D_{2 i-1}^{q}\right)\right\}$. We denote the orientation generator of $\pi_{p}\left(S_{i}^{p}\right)$ by ι_{p}^{i} and similarly $\left(D_{j}^{q}\right) \in$ $\pi_{q}\left(K_{\phi}, \bigvee_{i=1}^{r} S_{i}^{p}\right)$ by σ_{q}^{j}.

Lemma 4. The boundary of W of type II has a cellular decomposition $\partial W \simeq K_{\phi} \cup_{\omega} D^{m}$, where ω is given by $\omega=\mu+i_{*}\left(\iota_{p}^{1} \circ J \beta_{1}+\iota_{p}^{2} \circ J \beta_{2}+\cdots+\iota_{p}^{r} \circ J \beta_{r}\right)$. Here, $S\left(\beta_{i}\right)=\alpha\left(e_{i}\right), \quad \beta_{i} \in \pi_{q-1}\left(S O_{p}\right), \quad i=1,2, \cdots, r$, and $i_{*}: \pi_{m-1}\left(\bigvee_{i=1}^{r} S_{i}^{p}\right) \rightarrow$ $\pi_{m-1}\left(K_{\phi}\right)$ is induced from the inclusion map. $\mu \in \pi_{m-1}\left(K_{\phi}\right)$ is of infinite order and corresponds to $\left[\sigma_{q}^{1}, c_{p}^{1}\right]+\cdots+\left[\sigma_{q}^{r}, \iota_{p}^{r}\right]$ under $j_{*}: \pi_{m-1}\left(K_{\phi}\right) \rightarrow \pi_{m-1}\left(K_{\phi}, \bigvee_{i=1}^{r} S_{i}^{p}\right)$. μ does not depend on α and is called "fundamental homotopy class".

Proof (Sketch). We may assume that $r=2$ w.l.o.g. Since $S_{i}^{p}=D_{i}^{p} / \partial D_{i}^{p}$, each handle $D_{i}^{p} \times S_{i}^{p}$ of ∂W can be considered as $D_{i}^{q} \times D_{i}^{p}=D_{i}^{m}$ attached to
$D_{i}^{q} \times y_{i}\left(y_{i} \in S_{i}^{p}\right)$. So, by connecting $f_{1}\left(S_{1}^{q-1} \times D_{1}^{p+1}\right), f_{2}\left(S_{2}^{q-1} \times D_{2}^{p+1}\right)$ with a thin band in S^{m}, we have $\partial W=\tilde{Y} \cup\left(D_{1}^{q} \cup D_{2}^{q}\right) \cup\left(D_{1}^{m}\right.$ দ $\left.D_{2}^{m}\right)$, where $\tilde{Y}=S^{m}-$ Int $\left\{f_{1}\left(S_{1}^{q-1} \times D_{1}^{p+1}\right)\right.$ q $\left.f_{2}\left(S_{2}^{q-1} \times D_{2}^{p+1}\right)\right\}$ and q denotes the boundary connected sum. Let ω_{i} be the attaching map of $D_{i}^{m} . \quad D_{i}^{q}=D_{i}^{q} \times y_{i}$ can be taken as a half of the cross-section by β_{i} of the normal p-sphere bundle for e_{i}. ω_{i} is determined by the situation of a thin neighbourhood of D_{i}^{q} in the handle $D_{i}^{q} \times S_{i}^{p} \subset \partial W$. The attaching map ω of $D^{m}=D_{1}^{m} \vdash D_{2}^{m}$ is given by $\omega_{1} \# \omega_{2}$. Let Z be $f_{1}\left(S_{1}^{q-1} \times S_{1}^{p}\right) \# f_{2}\left(S_{2}^{q-1} \times S_{2}^{p}\right)$ with D_{1}^{q}, D_{2}^{q} attached. Z is included in $\tilde{Y} \cup$ ($D_{1}^{q} \cup D_{2}^{q}$) and we can see that Z is homotopy equivalent to $S^{m-1} \vee S_{1}^{p} \vee S_{2}^{p}$. Then, it is checked that $\omega_{1} \# \omega_{2}: \partial D^{m} \rightarrow Z$ corresponds to $\iota_{m-1}+\iota_{p}^{1} \circ J \beta_{1}+\iota_{p}^{2} \circ J \beta_{2}$ under the homotopy equivalence. \tilde{Y} is deformed to $S_{1}^{p} \vee S_{2}^{p}$ and the attaching maps of $D_{i}^{q}, i=1,2$, correspond to the linking elements of the link $f_{1}\left(S_{1}^{q-1} \times o\right)$ $\cup f_{2}\left(S_{2}^{q-1} \times o\right) \subset S^{m}$ which can be evaluated by ϕ. So, the retraction extends to a homotopy equivalence $\tilde{Y} \cup D_{1}^{q} \cup D_{2}^{q} \simeq K_{\phi}$. The subspace Z is also mapped to K_{ϕ}. Thus, we have $\omega=\mu+i_{*}\left(\iota_{p}^{1} \circ J \beta_{1}+\iota_{p}^{2} \circ J \beta_{2}\right)$, where μ is of infinite order since we know that $j_{*}(\mu)=\left[\sigma_{q}^{1}, \iota_{p}^{1}\right]+\left[\sigma_{q}^{2}, \iota_{p}^{2}\right]$ after a calculation.

Sufficiency proof for Theorem 2. Take the symplectic basis $e_{i}^{\prime}=h\left(e_{i}\right)$, $i=1,2, \cdots, r$, for H^{\prime}. We have $\partial W \simeq K_{\phi} \cup_{\omega} D^{m}, \partial W^{\prime} \simeq K_{\phi} \cup_{\omega^{\prime}} D^{m}$. Let τ_{p}^{i} : $S^{p} \cup_{\theta} D^{q} \rightarrow K_{\phi}$ be a canonical extension of $\iota_{p}^{i}: S^{p} \rightarrow S_{i}^{p}$. Then, $\omega=\mu+\left(i_{p}^{1} \circ i_{*} J \beta_{1}\right.$ $\left.+\cdots+\bar{\iota}_{p}^{r} \circ i_{*} J \beta_{r}\right)$ for $i_{*}: \pi_{m-1}\left(S^{p}\right) \rightarrow \pi_{m-1}\left(S^{p} \cup_{\theta} D^{q}\right)$, and similarly for ω^{\prime}. Since $\bar{\lambda}\left(S \beta_{i}\right)=\bar{\lambda} \alpha\left(e_{i}\right)=\bar{\lambda} \alpha^{\prime}\left(e_{i}^{\prime}\right)=\bar{\lambda}\left(S \beta_{i}^{\prime}\right)$ from the condition, we have $J \beta_{i}-J\left(\beta_{i}^{\prime}-\partial \gamma_{i}\right)=\delta_{i}$ for some $\gamma_{i} \in \pi_{q}\left(S^{p}\right), \delta_{i} \in \operatorname{Ker} i_{*}$. Put $\beta_{i}^{\prime \prime}=\beta_{i}^{\prime}-\partial \gamma_{i}, i=1,2, \cdots, r$. Since $S \beta_{i}^{\prime \prime}=$ $S \beta_{i}^{\prime}=\alpha^{\prime}\left(e_{i}^{\prime}\right)$, we can take another decomposition $\partial W^{\prime} \simeq K_{\phi} \cup_{\omega^{\prime \prime}} D^{m}$ with $\omega^{\prime \prime}=\mu$ $+\left(\bar{c}_{p}^{1} \circ i_{*} J \beta_{1}^{\prime \prime}+\cdots+i_{p}^{r} \circ i_{*} J \beta_{r}^{\prime \prime}\right)$. So, $\omega^{\prime \prime} \simeq \omega$ and therefore $\partial W \simeq \partial W^{\prime}$.

Lemma 5. Let W, W^{\prime} be of type II and let $f: \partial W \rightarrow \partial W^{\prime}$ be a homotopy equivalence. Then, there exist cellular decompositions $\partial W \simeq K_{\phi} \cup_{\omega} D^{m}$, $\partial W^{\prime} \simeq K_{\phi^{\prime}} \cup_{\omega^{\prime}} D^{\prime n}$ such that $f_{*} \mu-\mu^{\prime}=i_{*}^{\prime}\left(\left[\theta_{1}^{\prime}, \iota_{p}^{\prime 1}\right]+\cdots+\left[\theta_{r}^{\prime}, \iota_{p}^{\prime r}\right]\right)$ for certain elements $\theta_{i}^{\prime} \in \pi_{q}\left(\bigvee_{j=1}^{r} S_{j}^{\prime p}\right), i=1,2, \cdots, r$, where μ, μ^{\prime} are fundamental homotopy classes.

Proof (Sketch). $\quad K_{\phi^{\prime}}$ is a copy of $K_{\phi} . \quad$ By Lemma 2.1 of [2, II], we can take such decomposition that $f_{*}\left(\iota_{p}^{i}\right)=\iota_{p}^{\prime i}, i=1,2, \cdots, r$, (hence $f \mid \vee_{i=1}^{r} S_{i}^{p}=\mathbf{1}$) and $\bar{f}_{*}\left(\sigma_{q}^{j}\right)=\sigma_{q}^{\prime j}, j=1,2, \cdots, r$, where $\bar{f}:\left(K_{\phi}, \bigvee_{i=1}^{r} S_{i}^{p}\right) \rightarrow\left(K_{\phi^{\prime}}, \bigvee_{i=1}^{r} S_{i}^{p}\right)$. Let $K \equiv K_{\phi} \cup K_{\phi^{\prime}}$ with $S_{i}^{p}, S_{i}^{\prime p}$ identified for $i=1,2, \cdots, r$. Let $m: K_{\phi} \rightarrow K, m^{\prime}$: $K_{\phi^{\prime}} \rightarrow K$ be inclusion maps, and put $\bar{\mu}=m_{*} \mu, \mu^{\prime}=m_{*}^{\prime} \mu^{\prime}$. Let $A=\bigvee_{i=1}^{r}\left(S_{i}^{q} \vee S_{i}^{p}\right)$ $\cup_{x} D^{m}$, where $\chi=\left[c_{q}^{1}, c_{p}^{1}\right]+\cdots+\left[c_{q}^{r}, c_{p}^{r}\right]$. Then, by a certain geometric construction, there exists a map $g: A \rightarrow K \cup_{\bar{\mu}} D^{m} \cup_{\bar{\mu}^{\prime}} D^{\prime m}$ such that $\bar{\mu}-\bar{\mu}^{\prime}=$ $g_{*}\left(\left[\iota_{q}^{1}, \iota_{p}^{1}\right]+\cdots+\left[\iota_{q}^{r}, \iota_{p}^{r}\right]\right)$. Let $r^{\prime}: K \rightarrow K_{\phi^{\prime}}$ be the retraction defined by $r^{\prime} \mid K_{\phi}=f$ and $r^{\prime} \mid K_{\phi^{\prime}}=1$. Then, $f_{*}(\mu)-\mu^{\prime}=r_{*}^{\prime}\left(\bar{\mu}-\mu^{\prime}\right)=\left(r^{\prime} \circ g\right)_{*}\left(\left[\iota_{q}^{1}, \iota_{p}^{1}\right]+\cdots+\left[\iota_{q}^{r}, \iota_{p}^{r}\right]\right)$. From the construction of g, we know that $\left(r^{\prime} \circ g\right)_{*} \iota_{p}^{i}=i_{*}^{\prime} \iota_{p}^{\prime i}, l_{*}\left(g_{*} \iota_{q}^{i}\right)=\bar{m}_{*} \sigma_{q}^{i}-$ $\bar{m}_{*}^{\prime} \sigma_{q}^{\prime i}$, where $l: K \rightarrow\left(K, \bigvee_{i=1}^{r} S_{i}^{p}\right)$ is the inclusion map and $\bar{m}, \bar{m}^{\prime}$ are the relativizations of m, m^{\prime}. Hence, for $j_{*}^{\prime}: \pi_{q}\left(K_{\phi^{\prime}}\right) \rightarrow \pi_{q}\left(K_{\phi^{\prime}}, \bigvee_{i=1}^{r} S_{i}^{\prime p}\right)$, we have $j_{*}^{\prime}\left(r^{\prime} \circ g\right)_{*}^{i}{ }_{q}^{i}=\bar{r}_{*}^{\prime} l_{*}\left(g_{*}^{i} q_{q}^{i}\right)=\bar{r}_{*}^{\prime}\left(\bar{m}_{*} \sigma_{q}^{i}-\bar{m}_{*}^{\prime} \sigma_{q}^{i}\right)=\bar{f}_{*} \sigma_{q}^{i}-\sigma_{q}^{\prime i}=0$. Thus, there exists $\theta_{i}^{\prime} \in \pi_{q}\left(\vee_{j=1}^{r} S_{j}^{\prime p}\right)$ such that $i_{*}^{\prime}\left(\theta_{i}^{\prime}\right)=\left(r^{\prime} \circ g\right)_{*} \ell_{q}^{i}$. Therefore, $f_{*}(\mu)-\mu^{\prime}=i_{*}^{\prime}\left(\left[\theta_{1}^{\prime}, c_{p}^{\prime 1}\right]\right.$ $\left.+\cdots+\left[\theta_{r}^{\prime}, \iota_{p}^{\prime r}\right]\right)$.

Necessity proof for Theorem 2. Since $f_{*}(\omega)=\omega^{\prime}$, we have $f_{*}(\mu)-\mu^{\prime}+$ $i_{*}^{\prime}\left\{\iota_{p}^{\prime 1} \circ\left(J \beta_{1}-J \beta_{1}^{\prime}\right)+\cdots+\iota_{p}^{\prime r} \circ\left(J \beta_{r}-J \beta_{r}^{\prime}\right)\right\}=0$. In Lemma 5, $\theta_{i}^{\prime}=\sum_{j=1}^{r} \ell_{p}^{\prime j} \circ \theta_{i j}+$ $\Sigma_{j<k}\left[\iota_{p}^{\prime j}, \iota_{p}^{\prime k}\right] \circ \theta_{i j k}$ for certain $\theta_{i j} \in \pi_{q}\left(S^{p}\right), \theta_{i j k} \in \pi_{q}\left(S^{2 p-1}\right), j, k=1,2, \cdots, r$. So, we have $\sum_{i} i_{*}^{\prime} a_{i}+\sum_{i<j} i_{*}^{\prime} b_{i j}+\sum_{i \geqq j<k} i_{*}^{\prime} c_{i j k}=0$, where $a_{i}=\iota_{p}^{\prime \prime} \circ\left(J \beta_{i}-J \beta_{i}^{\prime}+\left[\theta_{i i}, \iota_{p}\right]\right)$ and those consisting of the basic products of weight 2 (weight 3) are included in the second (third) term. Hence, by the argument in Assertion 3 of [2, II, p. 321], we have $\sum_{i=1}^{r} i_{*}^{\prime} a_{i}=0$, and therefore, $i_{*}^{\prime} a_{i}=0, i=1,2, \cdots, r$. Define $\bar{\iota}_{p}^{\prime i}$ similarly to i_{p}^{i}. Since $i^{\prime} \circ \iota_{p}^{\prime i}=\bar{i}_{p}^{\prime i} \circ i$ and $\left(\bar{i}_{p}^{\prime i}\right)_{*}$ is injective, we have $i_{*}\left(J \beta_{i}-\right.$ $\left.J \beta_{i}^{\prime}+\left[\theta_{i i}, \iota_{p}\right]\right)=0$, and so $i_{*}\left(J \beta_{i}^{\prime}\right)-i_{*}\left(J \beta_{i}\right)=i_{*}\left(P \theta_{i i}\right)$. This implies $\bar{\lambda} \alpha\left(e_{i}\right)=$ $\bar{\lambda} \alpha^{\prime}\left(e_{i}^{\prime}\right), i=1,2, \cdots, r$. Then, an isomorphism $h: H \rightarrow H^{\prime}$ defined by $h\left(e_{i}\right)=e_{i}^{\prime}$, $i=1,2, \cdots, r$, will satisfy the conditions.

References

[1] Ishimoto, H.: On the classification of ($n-2$)-connected $2 n$-manifolds with torsion free homology groups. Publ. RIMS. Kyoto Univ., 9, 211-260 (1973).
[2] --: Homotopy classification of connected sums of sphere bundles over spheres. I. Nagoya Math. J., 83, 15-36 (1981) ; ditto. II. Publ. RIMS. Kyoto Univ., 18, 307-324 (1982) ; ditto. III. ibid., 19, 773-81. (1983).
[3] James, I. M. and J. H. C. Whitehead: The homotopy theory of sphere bundles over spheres. I. Proc. London Math. Soc., 4(3), 196-218 (1954).
[4] Wall, C. T. C.: Classification problems in differential topology-I. Classification of handlebodies. Topology, 2, 253-261 (1963).

[^0]: t) Dedicated to Professor Hirosi Toda on his 60 th birthday.

