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In the previous paper [4], we hve studied the asymptotic behaviors
of the following semilinear elliptic equation defined on the singularly
perturbed domain/2() with the Neumann boundary condition where 2()
--D1 D2 J Q() and the moving portion Q() approaches a line segment L
as --0.

(1.1) |_v_ 0
\

on 9(),

/3x is the Laplacian and , is the unit normal vector onwhere
9() and f is a real valued smooth function on R. We have proved in [4]
that any solution v for small >0, is approximated by some triple of solu-
tions (wx, w., V) of the following system of equations

(3w+f(w)=O in D, (i= 1 2)(1.2)
\Ow/O,=O on OD,

(d2V/dz+f(V)=O z e L,(o3)
(i= 1, 2),

where z is an adequate variable along L. In view of the above characteri-
zation of the solutions (1.1) the following inverse problem naturally arise,
i.e. for any given triple of solutions {w, w, V} of the system of the equations
(1.2) and (1.3), is there a family of functions {v}0<<, such that each v,, e
C(-)) is a solution of (1.1) and satisfies the following asymptotic
conditions,

vw in D (i= 1, 2), v V in Q()
for small >0 in some sense.

In this paper we report an affirmative answer to the above problem
under some non-degeneracy condition of {w,, w, V}.

First we establish the situation. We set the domain 2() in the fol-
lowing form"

/2() D1 J D2 J Q()
where D (i= 1, 2) and Q() are defined in the.following conditions (A.1)and
(A.2) where x’ (x, x, ., Xn) e R .
(A.1) D and D are bounded domains in R where Df3D= and each

D has a smooth boundary 3D and the following conditions hold
for some positive constant , >0.
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{(1, x’) e R
D {x (x,, x’) e R" x, >= l,

{(-- 1, x’) e
(A.2) Q({)= R,({) U R({) F({)

R,({)={(x,,x’) e R] 1--2{<x,1, ]x’<{p((x,--l)/{)}

F({)= {(x,, x’) e R 1+2x,1--2{,
where p e C(( 2, 0]) C((- 2, 0)) is a positive function such that p(0)= 2,
p(s)= 1 for s e (--2,- 1), dp/dsO for s e (--1, 0) and the inverse function
p-"(1,2)(--1,0) stisfies lim_o(dp-’/d)=O holds for any positive
integer k1. We put

p,=(1, 0, ..., 0), p=(--1, 0, ..., 0),
L= {(z, 0, ..., 0) e Rn] 1 <z<1}.

We impose the following conditions.
(A.3) fe C(R), limsup f()<0, limin f()>0.

(A.4) There exists a system of solutions {w, w, V} in
C(D) X C(D,) X C([ 1, 1]) of (1.2) and (1.3).

Definition. For the above solutions {w, w, V} in (A.4), we denote by
{w}=, and {2},, respectively, the system of the eigenvalues arranged in
increasing order (counting multiplicity) of the following eigenvalue prob-
lems (1.4) and (1.5),

(A+f’(w)+ we 0 in D U V,(1.4)
ka/3,=0 on 3D UaD,

where

(w,(x) or x e D,,w(x)
\w(x) 2or x e D,

/-d--S + f’(V)S+ 2S= 0 1 <z < 1,
(1.5) | dz

\S(1) =S(- 1)=0.
We assume the following non-degeneracy condition of {w, w, V}.
(A.5) {w}o___, f"l {2,}’__,-- , {}o=, U {2}o, 0.

Theorem. Assume n 3 and the assumptions (A.1)-(A.5). Then,
for any e (0, .), there exists a solution v of (1.1) such that
(1.6) lim sup [v(x)--w(x)l=O,

-0 xDIUD

(1.7) lim sup IV(XI, Xl) V(Z1)}-’0.
0 xeQ()

Sketch of proof. In the proof of Theorem, the results and methods
obtained in [4] and [5] are essentially applied, especially in our delicate
reduction of (1.1) to the problem of finite dimension. By these methods,
we can construct an approximate solution A: e C(/2(5)) such that

( i_m(2.1)
lim sup ]A:(x,,x’)--V(x,)[--O

--.o xeQ()
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/lim sup AA:(x)+ f(A:(x))]-- 0
(2.2) /0 e(:)

\A:(x)/av=O on /2().
We project (1.1) to the subspace of H09()) by using the eigenfunctions of
the linearized problem at A.

Let {Z,()}L and {,.}., be, respectively, the eigenvalues (counting
multiplicity) arranged in increasing order and the complete system of
orthonormalized eigenfunctions in L(/2()). By [5], we have the following
decompositions
(2.3)
(2.4)
where

and

(2.6)
(2.7)
Let

lim w({)=, lim I({)=i (/c___l)

(k_ 1),
(k_ 1).

X(5)--- H’(/2(5)), X,()-L.h.[{,.}q:l {p,.:}q:,]
and

X2() L.h.[{,}:q+ J {,:}:q. 1]in x ()

where q is a adequately fixed large natural number determined by f.
seek the solution in the form

v(x) A:()+ #)+#) where #’) e X,(5) (i= !, 2).

We

Project (1.1) to the subspaces XI() and X2() by the following operator P:
on L(/2()),

The difficulty of the reduction is due to the existence of the singularly
behaving eigenfunctions {,:): (cf. (2.5)) which are associated with the
partial collapse of (5). By the elaborate estimate (2.6)and (2.7), the
operator P: maps L(2())into L((5)) and its operator norm is bounded
in 50. Thus we can carry a good formulation in L(2(5)), i.e. we can
obtain the finite dimensional equation with respect to the variable r----

(r, r, ..., rq) by putting

(1)

k=l
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