90. Solvability in Distributions for a Class of Singular Differential Operators. II

By Hidetoshi Tahara
Department of Mathematics, Sophia University

(Communicated by Kôsaku Yosida, M. J. A., Nov. 14, 1988)

In [3], the author has established the local solvability in the space of distributions \mathscr{D}^{\prime} for some non-Fuchsian operators of hyperbolic type. In this paper, he will establish the local solvability in \mathscr{D}^{\prime} for a class of (nonFuchsian) singular elliptic operators including

$$
L=\left(t \partial_{t}\right)^{2}+\Delta_{x}+a(t, x)\left(t \partial_{t}\right)+\left\langle b(t, x), \partial_{x}\right\rangle+c(t, x) .
$$

As to the case of Fuchsian operators, see [2].
§ 1. Theorem. Let us consider

$$
P=\sum_{j+|\alpha| \leq m} a_{j, \alpha}(t, x)\left(t \partial_{t}\right)^{j} \partial_{x}^{\alpha},
$$

where $(t, x)=\left(t, x_{1}, \cdots, x_{n}\right) \in \boldsymbol{R}_{t} \times \boldsymbol{R}_{x}^{n}, \quad \partial_{t}=\partial / \partial t, \quad \partial_{x}=\left(\partial / \partial x_{1}, \cdots, \partial / \partial x_{n}\right), \quad m \in$ $\{1,2,3, \cdots\}, \alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in\{0,1,2, \cdots\}^{n},|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ and $\partial_{x}^{\alpha}=\left(\partial / \partial x_{1}\right)^{\alpha_{1}}$ $\cdots\left(\partial / \partial x_{n}\right)^{\alpha_{n}}$. On the coefficients, we assume that $a_{j, \alpha}(t, x)(j+|\alpha| \leqq m)$ are C^{∞} functions defined in an open neighborhood U of (0,0) in $\boldsymbol{R}_{t} \times \boldsymbol{R}_{x}^{n}$. As to the ellipticity, we assume the following condition:

$$
\sum_{j+|\alpha|=m} a_{j, \alpha}(0,0) \tau^{j} \xi^{\alpha} \neq 0, \quad \text { when }(0,0) \neq(\tau, \xi) \in \boldsymbol{R}_{\tau} \times \boldsymbol{R}_{\xi}^{n} \text {. }
$$

For U we write $U(+)=U \cap\{t>0\}$ and $U(-)=U \cap\{t<0\}$. Then we have
Theorem. Let $k \in\{0,1,2, \cdots\}$. Then there is an open neighborhood U_{k} of $(0,0)$ in $\boldsymbol{R}_{t} \times \boldsymbol{R}_{x}^{n}$ which satisfies the following: for any $f(t, x)(=f) \in$ $H^{-m-k}\left(U_{k}\right)$ there exists a $u(t, x)(=u) \in H^{-m-2 k-1}\left(U_{k}\right) \cap H_{\text {loc }}^{-k}\left(U_{k}(\pm)\right)$ such that $P u=f$ holds on U_{k}.

Here, $H^{-p}(U)$ and $H_{\mathrm{loc}}^{-p}(U)$ denote the usual Sobolev spaces on U (see [1]).
Corollary. For any $f \in \mathscr{D}^{\prime}(U)$ there exists a $u \in \mathscr{D}^{\prime}(U)$ such that $P u=f$ holds in a neighborhood of $(0,0)$ in $\boldsymbol{R}_{t} \times \boldsymbol{R}_{x}^{n}$.
§2. A priori estimates. Before giving a proof of Theorem, let us present a priori estimates for P. Put

$$
P_{s}=\sum_{j^{j+|\alpha| \leq m}} a_{j, \alpha}(t, x)\left(t \partial_{t}+s\right)^{j} \partial_{x}^{\alpha} .
$$

Lemma. Let P be as in §1. Then there are $\delta_{k}>0(k=0,1,2, \cdots)$ and an open neighborhood V of $(0,0)$ in $\boldsymbol{R}_{t} \times \boldsymbol{R}_{x}^{n}$ such that the estimate

$$
\begin{equation*}
\sum_{i+|\beta| \leqq k}\left\|\left(t \partial_{t}+1 / 2\right)^{i} \partial_{x}^{\beta}\left(P_{1 / 2} \varphi\right)\right\|^{2} \geqq \delta_{k} \sum_{j+|\alpha| \leqq m+k}\left\|\left(t \partial_{t}+1 / 2\right)^{j} \partial_{x}^{\alpha} \varphi\right\|^{2} \tag{2.1}
\end{equation*}
$$ holds for any $\varphi \in C_{0}^{\infty}(V(\pm))$, where $\|*\|$ means the norm in $L^{2}(V(\pm))$.

Proof. Note that by the change of variables $V(+) \ni(t, x) \rightarrow(\tau, x)=$ $(-\log t, x) \in \boldsymbol{R}_{\tau} \times \boldsymbol{R}_{x}^{n}$ the operator P is transformed into an elliptic operator R near ($\infty, 0$). Therefore by the standard argument for elliptic operators and by using Poincarés inequality with respect to the x-variables we can obtain

$$
\begin{equation*}
\|R \psi\|_{(r, x)}^{2} \geqq \delta_{0} \sum_{j+|\alpha| \leqq m}\left\|\partial_{\tau}^{j} \partial_{x}^{\alpha} \psi\right\|_{(r, x)}^{2} \tag{2.2}
\end{equation*}
$$

for any $\psi \in C_{0}^{\infty}((T, \infty) \times \omega)$, if T is sufficiently large and ω is sufficiently small. Since (2.2) is equivalent to

$$
\begin{equation*}
\left\|t^{-1 / 2} P \phi\right\|^{2} \geqq \delta_{0} \sum_{j+|\alpha| \leqq m}\left\|t^{-1 / 2}\left(t \partial_{t}\right)^{j} \partial_{x}^{\alpha} \phi\right\|^{2} \tag{2.3}
\end{equation*}
$$

under the relation $\phi(t, x)=\psi(\tau, x)$, by putting $\varphi(t, x)=t^{-1 / 2} \phi(t, x)$ in (2.3) we have

$$
\left\|P_{1 / 2} \varphi\right\|^{2} \geqq \delta_{0} \sum_{j+|\alpha| \leq m}\left\|\left(t \partial_{t}+1 / 2\right)^{j} \partial_{x}^{\alpha} \varphi\right\|^{2}
$$

for any $\varphi \in C_{0}^{\infty}\left((0, \varepsilon) \times \omega\right.$) (where $\left.\varepsilon=e^{-T}\right)$. Thus by putting $V=(-\varepsilon, \varepsilon) \times \omega$ we obtain (2.1). The general case (2.1) for $k \geqq 1$ can be proved inductively on k by using only the fact that (2.1) holds for any $\varphi \in C_{0}^{\infty}(V(\pm))$.

By applying Lemma to $\left(P_{-m-k+1 / 2}\right)$ (the formal adjoint operator of $P_{-m-k+1 / 2}$) we can obtain

Corollary to Lemma. Let P be as in § 1 , and let $k \in\{0,1,2, \cdots\}$. Then there are $c_{k}>0$ and an open neighborhood V_{k} of $(0,0)$ in $\boldsymbol{R}_{t} \times \boldsymbol{R}_{x}^{n}$ such that the estimate

$$
\left\|\left(P_{-m-k}\right)^{*} \varphi\right\|_{k}^{2} \geqq c_{k}\left\|t^{m+k} \varphi\right\|_{m+k}^{2}
$$

holds for any $\varphi \in C_{0}^{\infty}\left(V_{k}(\pm)\right)$, where $\|*\|_{k}$ means the norm in the Sobolev space $H^{k}\left(V_{k}(\pm)\right)$.
§3. Proof of Theorem. Theorem is obtained by the following three facts (A-1)-(A-3).
(A-1) Let $k \in\{0,1,2, \cdots\}$. Then there is an open neighborhood V_{k} of $(0,0)$ in $\boldsymbol{R}_{t} \times \boldsymbol{R}_{x}^{n}$ which satisfies the following : for any open subset W of V_{k} and any $f \in H^{-m-k}(W(\pm))$, there exists a $u \in H^{-k}(W(\pm))$ such that $P\left(t^{-m-k} u\right)=f$ holds on $W(\pm)$.
(A-2) Let $k, p \in\{0,1,2, \cdots\}$ and $u \in H^{-k}((0, T) \times \Omega)$ (where Ω is an open subset of $\left.R_{x}^{n}\right)$. Then we can find a $w \in H^{-p-k}((-T, T) \times \Omega)$ such that $w=$ $t^{-p} u$ on $(0, T) \times \Omega$ and $w=0$ on $(-T, 0) \times \Omega$.
(A-3) Let $N \in\{0,1,2, \cdots\}$. Then there is an open neighborhood Ω_{N} of $x=0$ in \boldsymbol{R}_{x}^{n} which satisfies the following: for any open subsets $\omega \in \omega_{1}$ of Ω_{N} and any $h \in H^{-N}\left((-T, T) \times \omega_{1}\right)$ satisfying supp $(h) \subset\{t=0\}$, there exists a $v \in H^{-N-1+m}((-T, T) \times \omega)$ satisfying supp $(v) \subset\{t=0\}$ such that $P v=h$ holds on $(-T, T) \times \omega$.

In fact, if we know these facts, we can give a proof of Theorem as follows. Let $k \in\{0,1,2, \cdots\}$, and let $\omega \in \omega_{1}$ be sufficiently small open neighborhoods of $x=0$ in R_{x}^{n} (depending on k). Put $W=(-T, T) \times \omega$ and $W_{1}=$ $(-T, T) \times \omega_{1}$.

Let $f \in H^{-m-k}(W)$. Choose $f_{1} \in H^{-m-k}\left(W_{1}\right)$ so that $f_{1}=f$ on W. Then by (A-1) we can find $u_{+} \in H^{-k}\left(W_{1}(+)\right)$ and $u_{-} \in H^{-k}\left(W_{1}(-)\right)$ such that $P\left(t^{-m-k} u_{+}\right)=f_{1}$ on $W_{1}(+)$ and $P\left(t^{-m-k} u_{-}\right)=f_{1}$ on $W_{1}(-)$. Moreover by (A-2) we can find a $w \in H^{-m-2 k}\left(W_{1}\right)$ such that $w=t^{-m-k} u_{+}$on $W_{1}(++)$ and $w=$ $t^{-m-k} u_{-}$on $W_{1}(-)$. Put $h=f_{1}-P w$. Then we have $h \in H^{-2 m-2 k}\left(W_{1}\right)$ and $\operatorname{supp}(h) \subset\{t=0\}$. Therefore by (A-3) we have a $v \in H^{-m-2 k-1}(W)$ such that
$P v=h$ on W. Hence by putting $u=v+w$ we obtain a solution $u \in$ $H^{-m-2 k-1}(W)$ of $P u=f$ on W. Since P is elliptic on $W(\pm)$ and since $P u(=f)$ $\in H^{-m-k}(W(\pm))$, the condition $u \in H_{10 c}^{-k}(W(\pm))$ is clear.

Thus, to have Theorem it is sufficient to prove (A-1)-(A-3).
Proof of (A-1). Let $f \in H^{-m-k}(W(\pm))$. Put $Z=\left\{\left(P_{-m-k}\right) * \varphi ; \varphi \in C_{0}^{\infty}\right.$ $(W(\pm))\}$ and define a linear functional T on Z by $T\left(\left(P_{-m-k}\right)^{*} \varphi\right)=\left\langle\varphi, t^{m+k} f\right\rangle$. Then by Corollary to Lemma in $\S 2$ we can see that T is well-defined and it is continuous on Z with respect to the topology induced from $H_{0}^{k}(W(\pm))$. Therefore we can find a $u \in H^{-k}(W(\pm))$ such that $T(z)=\langle z, u\rangle$ for any $z \in Z$, that is, $\left\langle\left(P_{-m-k}\right) * \varphi, u\right\rangle=\left\langle\varphi, t^{m+k} f\right\rangle$ for any $\varphi \in C_{0}^{\infty}(W(\pm))$. Hence, we have $P_{-m-k} u=t^{m+k} f$ on $W(\pm)$ and therefore $P\left(t^{-m-k} u\right)=f$ on $W(\pm)$.

Proof of (A-2). When $k=0$, (A-2) is verified as follows: for $u \in L^{2}$ $((0, T) \times \Omega)$, by defining

$$
\langle w, \varphi\rangle=\left\langle t^{-p} u,\left(\varphi-\sum_{i=0}^{p-1} \frac{t^{i}}{i!}\left(\partial_{t}^{i} \varphi\right)(0, x)\right)\right\rangle_{L^{2}((0, T) \times \Omega)}
$$

(for $\varphi \in C_{0}^{\infty}((-T, T) \times \Omega)$) we can obtain a $w \in H^{-p}((-T, T) \times \Omega)$ such that $w=t^{-p} u$ on $(0, T) \times \Omega$ and $w=0$ on $(-T, 0) \times \Omega$.

When $k \geqq 1$, (A-2) is verified as follows. Let $u \in H^{-k}((0, T) \times \Omega)$. Then u is expressed in the form $u=\sum_{j+|\alpha| \leqq k} \partial_{t}^{j} \partial_{x}^{\alpha}\left(f_{j, \alpha}\right)$ for some $f_{j, \alpha} \in L^{2}((0, T) \times \Omega)$. Therefore we have

$$
t^{-p} u=\sum_{i+|\alpha| \leq k} \partial_{t}^{i} \partial_{x}^{\alpha}\left(\sum_{l=0}^{k-|\alpha|-i} t^{-p-l} g_{i, \alpha, l}\right) \quad \text { on }(0, T) \times \Omega
$$

for some $g_{i, \alpha, l} \in L^{2}((0, T) \times \Omega)$. Since (A-2) with $k=0$ is already known, we can find $w_{i, \alpha, l} \in H^{-p-l}((-T, T) \times \Omega)$ such that $w_{i, \alpha, l}=t^{-p-l} g_{i, \alpha, l}$ on $(0, T) \times \Omega$ and $w_{i, \alpha, l}=0$ on $(-T, 0) \times \Omega$. Hence, by putting

$$
w=\sum_{i+|\alpha| \leq k} \partial_{t}^{i} \partial_{x}^{\alpha}\left(\sum_{i=0}^{k-|\alpha|-i} w_{i, \alpha, l}\right)
$$

we obtain a desired extension $w \in H^{-p-k}((-T, T) \times \Omega)$ in (A-2).
Proof of (A-3). Let ω_{1} and h be as in (A-3). Then, by [1, Proposition 4.8 in Chapter 2] we can see that h is expressed in the form $h=\sum_{i=0}^{N-1} \delta^{(i)}(t) \otimes$ $\mu_{i}(x)$ for some $\mu_{i} \in H_{10 \mathrm{coc}}^{-N+i}\left(\omega_{1}\right)(i=0,1, \cdots, N-1)$. Therefore, by the condition $\omega \in \omega_{1}$ we have $\mu_{i}\left(=\left.\mu_{i}\right|_{\omega}\right) \in H^{-N+i}(\omega)(i=0,1, \cdots, N-1)$. Put

$$
C\left(\rho ; x, \partial_{x}\right)=\sum_{j+|\alpha| \leqq m} a_{j, \alpha}(0, x) \rho^{j} \partial_{x}^{\alpha}
$$

and note that $C\left(\rho ; x, \partial_{x}\right)$ is an elliptic operator near $x=0$. Put $v=\sum_{i=0}^{N-1} \delta^{(i)}$ $(t) \otimes \psi_{i}(x)$. Then, we can see that $P v=h$ is equivalent to the following recursive system of elliptic equations:

$$
\left\{\begin{array}{l}
C\left(-N ; x, \partial_{x}\right) \psi_{N-1}=\mu_{N-1}, \tag{3.1}\\
C\left(-N+1 ; x, \partial_{x}\right) \psi_{N-2}=\mu_{N-2}+L_{N-2, N-1}\left(x, \partial_{x}\right) \psi_{N-1}, \\
\quad \vdots \vdots \vdots \vdots \vdots \\
C\left(-1 ; x, \partial_{x}\right) \psi_{0}=\mu_{0}+\sum_{l=1}^{N-1} L_{0, l}\left(x, \partial_{x}\right) \psi_{l},
\end{array}\right.
$$

where $L_{i, l}\left(x, \partial_{x}\right)(0 \leqq i \leqq N-2$ and $i+1 \leqq l \leqq N-1)$ are differential operators of order m determined by P. Therefore, if ω is sufficiently small (depending on N), we can solve (3.1) successively and obtain $\psi_{i}(x) \in H^{-N+i+m}(\omega)$
$(i=0,1, \cdots, N-1)$. Thus, we obtain a solution $v=\sum_{i=0}^{N-1} \delta^{(i)}(t) \otimes \psi_{i}(x) \in$ $H^{-N-1+m}((-T, T) \times \omega)$ of $P v=h$ on $(-T, T) \times \omega$.

References

[1] J. Chazarain and A. Piriou: Introduction to the Theory of Linear Partial Differential Equations. North-Holland (1982).
[2] H. Tahara: On the local solvability of Fuchsian type partial differential equations. Prospect of Algebraic Analysis, Academic Press (1988).
[3] -: Solvability in distributions for a class of singular differential operators. I. Proc. Japan Acad., 64A, 219-222 (1988).

