90. Solvability in Distributions for a Class of Singular Differential Operators. II

By Hidetoshi TAHARA

Department of Mathematics, Sophia University

(Communicated by Kôsaku Yosida, m. j. a., Nov. 14, 1988)

In [3], the author has established the local solvability in the space of distributions \mathcal{D}' for some non-Fuchsian operators of hyperbolic type. In this paper, he will establish the local solvability in \mathcal{D}' for a class of (non-Fuchsian) singular elliptic operators including

 $L = (t\partial_t)^2 + \Delta_x + a(t, x)(t\partial_t) + \langle b(t, x), \partial_x \rangle + c(t, x).$

As to the case of Fuchsian operators, see [2].

 \boldsymbol{P}

§1. Theorem. Let us consider

 $P = \sum_{j+|\alpha| \leq m} a_{j,\alpha}(t,x)(t\partial_t)^j \partial_x^{\alpha},$

where $(t, x) = (t, x_1, \dots, x_n) \in \mathbf{R}_t \times \mathbf{R}_x^n$, $\partial_t = \partial/\partial t$, $\partial_x = (\partial/\partial x_1, \dots, \partial/\partial x_n)$, $m \in \{1, 2, 3, \dots\}$, $\alpha = (\alpha_1, \dots, \alpha_n) \in \{0, 1, 2, \dots\}^n$, $|\alpha| = \alpha_1 + \dots + \alpha_n$ and $\partial_x^{\alpha} = (\partial/\partial x_1)^{\alpha_1}$. $\dots (\partial/\partial x_n)^{\alpha_n}$. On the coefficients, we assume that $a_{j,\alpha}(t, x)$ $(j+|\alpha| \leq m)$ are C^{∞} functions defined in an open neighborhood U of (0, 0) in $\mathbf{R}_t \times \mathbf{R}_x^n$. As to the ellipticity, we assume the following condition:

 $\sum_{j+|\alpha|=m} a_{j,\alpha}(0,0)\tau^{j}\xi^{\alpha} \neq 0, \qquad \text{when } (0,0) \neq (\tau,\xi) \in \boldsymbol{R}_{\tau} \times \boldsymbol{R}_{\xi}^{n}.$

For U we write $U(+) = U \cap \{t > 0\}$ and $U(-) = U \cap \{t < 0\}$. Then we have

Theorem. Let $k \in \{0, 1, 2, \dots\}$. Then there is an open neighborhood U_k of (0, 0) in $\mathbf{R}_t \times \mathbf{R}_x^n$ which satisfies the following: for any $f(t, x)(=f) \in H^{-m-k}(U_k)$ there exists a $u(t, x)(=u) \in H^{-m-2k-1}(U_k) \cap H^{-k}_{loc}(U_k(\pm))$ such that Pu = f holds on U_k .

Here, $H^{-p}(U)$ and $H^{-p}_{loc}(U)$ denote the usual Sobolev spaces on U (see [1]).

Corollary. For any $f \in \mathcal{D}'(U)$ there exists a $u \in \mathcal{D}'(U)$ such that Pu = f holds in a neighborhood of (0, 0) in $\mathbb{R}_t \times \mathbb{R}_x^n$.

§ 2. A priori estimates. Before giving a proof of Theorem, let us present a priori estimates for P. Put

$$a_s = \sum_{j+|\alpha| \leq m} a_{j,\alpha}(t,x)(t\partial_t + s)^j \partial_x^{\alpha}.$$

Lemma. Let P be as in §1. Then there are $\delta_k > 0$ $(k=0, 1, 2, \cdots)$ and an open neighborhood V of (0, 0) in $\mathbb{R}_t \times \mathbb{R}_x^n$ such that the estimate $(2.1)_k \sum_{i+|\beta| \leq k} \|(t\partial_t + 1/2)^i \partial_x^\beta (P_{1/2}\varphi)\|^2 \geq \delta_k \sum_{j+|\alpha| \leq m+k} \|(t\partial_t + 1/2)^j \partial_x^\alpha \varphi\|^2$

holds for any $\varphi \in C_0^{\infty}(V(\pm))$, where $\|*\|$ means the norm in $L^2(V(\pm))$.

Proof. Note that by the change of variables $V(+) \ni (t, x) \rightarrow (\tau, x) = (-\log t, x) \in \mathbf{R}_{\tau} \times \mathbf{R}_{x}^{n}$ the operator P is transformed into an elliptic operator R near $(\infty, 0)$. Therefore by the standard argument for elliptic operators and by using Poincaré's inequality with respect to the x-variables we can obtain

Solvability for Singular Operators. II

(2.2)
$$\|R\psi\|_{(\tau,x)}^2 \ge \delta_0 \sum_{j+|\alpha| \le m} \|\partial_\tau^j \partial_x^\alpha \psi\|_{(\tau,x)}^2$$

for any $\psi \in C_0^{\infty}((T, \infty) \times \omega)$, if T is sufficiently large and ω is sufficiently small. Since (2.2) is equivalent to

(2.3)
$$\|t^{-1/2}P\phi\|^2 \ge \delta_0 \sum_{j+|\alpha| \le m} \|t^{-1/2}(t\partial_t)^j \partial_x^{\alpha} \phi\|^2$$

under the relation $\phi(t, x) = \psi(\tau, x)$, by putting $\varphi(t, x) = t^{-1/2}\phi(t, x)$ in (2.3) we have

$$\|P_{\scriptscriptstyle 1/2}\varphi\|^2 \ge \delta_0 \sum_{j+|\alpha| \le m} \|(t\partial_t + 1/2)^j \partial_x^{lpha} \varphi\|^2$$

for any $\varphi \in C_0^{\infty}((0, \varepsilon) \times \omega)$ (where $\varepsilon = e^{-T}$). Thus by putting $V = (-\varepsilon, \varepsilon) \times \omega$ we obtain $(2.1)_0$. The general case $(2.1)_k$ for $k \ge 1$ can be proved inductively on k by using only the fact that $(2.1)_0$ holds for any $\varphi \in C_0^{\infty}(V(\pm))$.

By applying Lemma to $(P_{-m-k+1/2})^*$ (the formal adjoint operator of $P_{-m-k+1/2}$) we can obtain

Corollary to Lemma. Let P be as in §1, and let $k \in \{0, 1, 2, \dots\}$. Then there are $c_k > 0$ and an open neighborhood V_k of (0, 0) in $\mathbf{R}_t \times \mathbf{R}_x^n$ such that the estimate

$$\|(P_{-m-k})^*\varphi\|_k^2 \ge c_k \|t^{m+k}\varphi\|_{m+k}^2$$

holds for any $\varphi \in C_0^{\infty}(V_k(\pm))$, where $\|*\|_k$ means the norm in the Sobolev space $H^k(V_k(\pm))$.

§ 3. Proof of Theorem. Theorem is obtained by the following three facts (A-1)-(A-3).

(A-1) Let $k \in \{0, 1, 2, \dots\}$. Then there is an open neighborhood V_k of (0, 0) in $\mathbb{R}_t \times \mathbb{R}_x^n$ which satisfies the following: for any open subset W of V_k and any $f \in H^{-m-k}(W(\pm))$, there exists a $u \in H^{-k}(W(\pm))$ such that $P(t^{-m-k}u) = f$ holds on $W(\pm)$.

(A-2) Let $k, p \in \{0, 1, 2, \dots\}$ and $u \in H^{-k}((0, T) \times \Omega)$ (where Ω is an open subset of \mathbb{R}_x^n). Then we can find a $w \in H^{-p-k}((-T, T) \times \Omega)$ such that $w = t^{-p}u$ on $(0, T) \times \Omega$ and w = 0 on $(-T, 0) \times \Omega$.

(A-3) Let $N \in \{0, 1, 2, \dots\}$. Then there is an open neighborhood Ω_N of x=0 in \mathbb{R}^n_x which satisfies the following: for any open subsets $\omega \subset \omega_1$ of Ω_N and any $h \in H^{-N}((-T, T) \times \omega_1)$ satisfying $\operatorname{supp}(h) \subset \{t=0\}$, there exists a $v \in H^{-N-1+m}((-T, T) \times \omega)$ satisfying $\operatorname{supp}(v) \subset \{t=0\}$ such that Pv=h holds on $(-T, T) \times \omega$.

In fact, if we know these facts, we can give a proof of Theorem as follows. Let $k \in \{0, 1, 2, \dots\}$, and let $\omega \subset \omega_1$ be sufficiently small open neighborhoods of x=0 in \mathbb{R}^n_x (depending on k). Put $W=(-T, T)\times\omega$ and $W_1=(-T, T)\times\omega_1$.

Let $f \in H^{-m-k}(W)$. Choose $f_1 \in H^{-m-k}(W_1)$ so that $f_1 = f$ on W. Then by (A-1) we can find $u_+ \in H^{-k}(W_1(+))$ and $u_- \in H^{-k}(W_1(-))$ such that $P(t^{-m-k}u_+) = f_1$ on $W_1(+)$ and $P(t^{-m-k}u_-) = f_1$ on $W_1(-)$. Moreover by (A-2) we can find a $w \in H^{-m-2k}(W_1)$ such that $w = t^{-m-k}u_+$ on $W_1(+)$ and $w = t^{-m-k}u_-$ on $W_1(-)$. Put $h = f_1 - Pw$. Then we have $h \in H^{-2m-2k}(W_1)$ and $\sup p(h) \subset \{t=0\}$. Therefore by (A-3) we have a $v \in H^{-m-2k-1}(W)$ such that

319

No. 9]

Pv=h on W. Hence by putting u=v+w we obtain a solution $u \in H^{-m-2k-1}(W)$ of Pu=f on W. Since P is elliptic on $W(\pm)$ and since $Pu(=f) \in H^{-m-k}(W(\pm))$, the condition $u \in H^{-k}_{loc}(W(\pm))$ is clear.

Thus, to have Theorem it is sufficient to prove (A-1)-(A-3).

Proof of (A-1). Let $f \in H^{-m-k}(W(\pm))$. Put $Z = \{(P_{-m-k})^*\varphi; \varphi \in C_0^{\infty}(W(\pm))\}$ and define a linear functional T on Z by $T((P_{-m-k})^*\varphi) = \langle \varphi, t^{m+k}f \rangle$. Then by Corollary to Lemma in §2 we can see that T is well-defined and it is continuous on Z with respect to the topology induced from $H_0^k(W(\pm))$. Therefore we can find a $u \in H^{-k}(W(\pm))$ such that $T(z) = \langle z, u \rangle$ for any $z \in Z$, that is, $\langle (P_{-m-k})^*\varphi, u \rangle = \langle \varphi, t^{m+k}f \rangle$ for any $\varphi \in C_0^{\infty}(W(\pm))$. Hence, we have $P_{-m-k}u = t^{m+k}f$ on $W(\pm)$ and therefore $P(t^{-m-k}u) = f$ on $W(\pm)$.

Proof of (A-2). When k=0, (A-2) is verified as follows: for $u \in L^2$ ((0, T)× Ω), by defining

$$\langle w, \varphi \rangle = \left\langle t^{-p} u, \left(\varphi - \sum_{i=0}^{p-1} \frac{t^i}{i!} (\partial_t^i \varphi)(0, x) \right) \right\rangle_{L^2((0,T) imes \Omega)}$$

(for $\varphi \in C_0^{\infty}((-T, T) \times \Omega)$) we can obtain a $w \in H^{-p}((-T, T) \times \Omega)$ such that $w = t^{-p}u$ on $(0, T) \times \Omega$ and w = 0 on $(-T, 0) \times \Omega$.

When $k \ge 1$, (A-2) is verified as follows. Let $u \in H^{-k}((0, T) \times \Omega)$. Then u is expressed in the form $u = \sum_{j+|\alpha| \le k} \partial_t^j \partial_x^{\alpha}(f_{j,\alpha})$ for some $f_{j,\alpha} \in L^2((0, T) \times \Omega)$. Therefore we have

$$t^{-p}u = \sum_{\substack{i+|\alpha| \le k}} \partial_i^{i} \partial_x^{\alpha} \left(\sum_{l=0}^{k-|\alpha|-i} t^{-p-l} g_{i,\alpha,l} \right) \quad \text{on } (0, T) \times \Omega$$

for some $g_{i,\alpha,l} \in L^2((0,T) \times \Omega)$. Since (A-2) with k=0 is already known, we can find $w_{i,\alpha,l} \in H^{-p-l}((-T,T) \times \Omega)$ such that $w_{i,\alpha,l} = t^{-p-l}g_{i,\alpha,l}$ on $(0,T) \times \Omega$ and $w_{i,\alpha,l} = 0$ on $(-T,0) \times \Omega$. Hence, by putting

$$w = \sum_{i+|\alpha| \le k} \partial_i^i \partial_x^\alpha \left(\sum_{l=0}^{k-|\alpha|-i} w_{i,\alpha,l} \right)$$

we obtain a desired extension $w \in H^{-p-k}((-T, T) \times \Omega)$ in (A-2).

Proof of (A-3). Let ω_1 and h be as in (A-3). Then, by [1, Proposition 4.8 in Chapter 2] we can see that h is expressed in the form $h = \sum_{i=0}^{N-1} \delta^{(i)}(t) \otimes \mu_i(x)$ for some $\mu_i \in H_{loc}^{-N+i}(\omega_1)$ $(i=0,1,\cdots,N-1)$. Therefore, by the condition $\omega \subset \omega_1$ we have $\mu_i(=\mu_i|_{\omega}) \in H^{-N+i}(\omega)$ $(i=0,1,\cdots,N-1)$. Put $C(\rho; x, \partial_x) = \sum_{j+|\alpha| \leq m} a_{j,\alpha}(0,x) \rho^j \partial_x^{\alpha}$

and note that $C(\rho; x, \partial_x)$ is an elliptic operator near x=0. Put $v=\sum_{i=0}^{N-1} \delta^{(i)}$ $(t)\otimes_{\psi_i}(x)$. Then, we can see that Pv=h is equivalent to the following recursive system of elliptic equations:

(3.1)
$$\begin{cases} C(-N; x, \partial_x)\psi_{N-1} = \mu_{N-1}, \\ C(-N+1; x, \partial_x)\psi_{N-2} = \mu_{N-2} + L_{N-2,N-1}(x, \partial_x)\psi_{N-1}, \\ \vdots \vdots \vdots \vdots \vdots \vdots \\ C(-1; x, \partial_x)\psi_0 = \mu_0 + \sum_{l=1}^{N-1} L_{0,l}(x, \partial_x)\psi_l, \end{cases}$$

where $L_{i,l}(x, \partial_x)$ $(0 \le i \le N-2 \text{ and } i+1 \le l \le N-1)$ are differential operators of order *m* determined by *P*. Therefore, if ω is sufficiently small (depending on *N*), we can solve (3.1) successively and obtain $\psi_i(x) \in H^{-N+i+m}(\omega)$ $(i=0,1,\dots,N-1)$. Thus, we obtain a solution $v = \sum_{i=0}^{N-1} \delta^{(i)}(t) \otimes \psi_i(x) \in H^{-N-1+m}((-T,T) \times \omega)$ of Pv = h on $(-T,T) \times \omega$.

References

- [1] J. Chazarain and A. Piriou: Introduction to the Theory of Linear Partial Differential Equations. North-Holland (1982).
- [2] H. Tahara: On the local solvability of Fuchsian type partial differential equations. Prospect of Algebraic Analysis, Academic Press (1988).
- [3] ——: Solvability in distributions for a class of singular differential operators. I. Proc. Japan Acad., 64A, 219-222 (1988).