82. On Generalization of G_i Diagonal and Metrization

By G. R. HIREMATH

Department of Mathematics, Talladega College

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1988)

Introduction. J. Chaber's result, [6], that countably compact spaces with G_{δ} diagonal are compact, has inspired us to define the conditions (α_{i}) , i=1,2 as follows. (See J.G. Ceder's characterization of G_{δ} diagonal, [5].)

 (α_1) (resp. (α_2)): There is a sequence $\{U_n\}_n$ of semi-open covers with $\bigcap_n St(x, U_n) = \{x\}$, (resp. $\bigcap_n \overline{St(x, U_n)} = \{x\}$) for each x in the topological space under consideration, where $St(x, U_n) = \bigcup \{U \in U_n \mid x \in U\}$. We call such a sequence $\{U_n\}_n$ an (α_1) (resp. (α_2)) sequence.

According to [1], a cover U of a space x is called *semi-open*, if $x \in \text{Int } St(x, U)$ for $x \in X$. Clearly (α_2) and G_{δ} diagonal property [5] imply (α_1) .

1. Implication of the conditions (a_i) , i=1, 2. Refer [2], [11] and [12] respectively for the notions of point countable type, q and wM.

Lemma 1.1. A regular q space X with (α_1) is first countable.

Proof. Let $x \in X$, $\{G_n\}_n$ be a q sequence at x and $\{U_n\}_n$ be an (α_1) sequence in X. By induction, we can obtain a sequence $\{H_n\}_n$ of open sets with $x \in H_{n+1} \subset \overline{H}_{n+1} \subset H_n \cap G_{n+1} \cap \operatorname{Int} St(x, U_{n+1})$ for each n. Now, $\{H_n | \geqslant 1\}$ forms a local base at x.

Theorem 1.2. A regular q space with (α_1) is an open continuous image of a metrizable space.

Proof. Apply the Lemma 1.1 and a result of Ponomarev and Hanai [13], [8]. Q.E.D.

Theorem 1.3. If a regular q space with (α_1) is a quotient image of a locally compact, separable and metrizable space, then the space is locally compact, separable and metrizable.

Proof. Apply the Lemma 1.1 and a result of A. H. Stone, [15].

Q.E.D.

Note 1.4. Since a T_1 space of point countable type is a q space [9], we can replace "q space" by "space of point countable type" in the above theorem.

Theorem 1.5. A wM space X is metrizable, iff it has (α_2) .

Proof. The condition is clearly necessary. To prove that the condition is sufficient, let X have (α_2) and $\{U_n\}_n$ be an (α_2) sequence. Let $\{\mathcal{G}_n\}_n$ be a wM sequence in X. Let $\mathcal{H}_n = U_n \wedge \mathcal{G}_n$ for each $n \geqslant 1$, where $U_n \wedge \mathcal{G}_n = \{U \cap G | U \in U_n \text{ and } G \in \mathcal{G}_n\}$. Then $\{\mathcal{H}_n\}_n$ is also an (α_2) sequence. We may assume that $\mathcal{H}_{n+1} \prec \mathcal{H}_n$ (i.e. \mathcal{H}_{n+1} refines \mathcal{H}_n) for each n. To claim that $\{\mathcal{H}_n\}_n$ is a semi-development of X, we show that $\{St(x, \mathcal{H}_n) | n \geqslant 1\}$ is a network at x > 1

for each $x \in X$. Let $x \in X$ and U be an open nhd of x. Assume that $x_n \in St(x, \mathcal{H}_n) - U$ for each n. Then $\{x_n\}_n$ has a cluster point, say, y. Since $\mathcal{H}_{n+1} \prec \mathcal{H}_n$ for each n, we have $y \in \overline{St(x, \mathcal{H}_n)}$ for each n. It follows that $y \in \bigcap_n \overline{St(x, \mathcal{H}_n)} = \{x\} \subset U$. Since U is an open nhd of y and y is a cluster point of $\{x_n\}_n$, it follows that U contains infinitely many x_n 's, which is a contradiction to $x_n \notin U$ for each n. Therefore $St(x, \mathcal{H}_n) \subset U$ for some n. Thus X is a T_2 semi-developable space and hence it is semi-metrizable, [1]. As a T_2 semi-metrizable $y \in X$ space is metrizable, X is metrizable, [11]. Q.E.D.

Note 1.6. A $w\Delta$ space with (α_2) is semi-metrizable and a regular $w\Delta$ space with (α_2) is a Moore space. (See [10] for $w\Delta$ notion.) An (α_1) sequence $\{U_n\}_n$ is called an (α_3) sequence if each U_n is a closure preserving closed cover. A $\sum_{i=1}^{n}$ space with (α_3) is a σ -space.

2. Invariance of Semi-developability. According to [3], a map $f: X \to Y$ is called a *pseudo-open map*, if for each $y \in Y$, whenever U is a nhd of $f^{-1}(y)$, f(U) is a nhd of y. It is well-known that G_{δ} diagonal property is not preserved under perpect maps, [4] (even more, under finite to one closed continuous maps [14]).

Lemma 2.1. Let $f: X \rightarrow Y$ be a finite to one, pseudo-open map and let X have (α_1) . Then Y has (α_1) .

Proof. Let $\{U_n\}_n$ be an (α_1) sequence in X, and $U_{n+1} \lt U_n$ for each $n \ge 1$. Let $\mathcal{Q}_n = f(U_n) = \{f(U) \mid U \in U_n\}$ for each $n \ge 1$. We claim that $\{\mathcal{Q}_n\}_n$ is an (α_1) sequence in Y. To see \mathcal{Q}_n is a semi-open cover of Y for each n, let $y \in Y$. Since, $St(y, \mathcal{Q}_n) = f(St(f^{-1}(y), U_n))$ and $St(f^{-1}(y), U_n)$ is a nhd of $f^{-1}(y)$, it follows that $St(y, \mathcal{Q}_n)$ is a nhd of y. To see that $\bigcap_n St(y, \mathcal{Q}_n) = \{y\}$ for each $y \in Y$, assume the contrary. Then, for some $y \in Y$, there is $z \in Y$ with $y \ne z$ and $z \in \bigcap_n St(y, \mathcal{Q}_n)$. Consequently, for each n, we can find $U_n \in U_n$ with y, $z \in f(U_n)$. Since, $f^{-1}(y) \cup f^{-1}(z)$ is finite, there is a pair of distinct points, $\{x_1, x_2\}$ contained in $U_{n_k} \in U_{n_k}$ for each k, for some subsequence $\{n_k\}_k$. Since, $U_{n+1} \lt U_n$ for each n, we have $\{x_1, x_2\} \subset$ some $U \in U_n$ for each n. But then, $x_1 = x_2$ which is a contradiction. Therefore, $\bigcap_n St(y, \mathcal{Q}_n) = \{y\}$ for each $y \in Y$ and our claim is established. Q.E.D.

Corollary 2.2. Let X have G_{δ} diagonal and let $f: X \to Y$ be a finite to one, pseudo-open map of X onto Y. Then Y has (α_1) .

Theorem 2.3. Let $f: X \rightarrow Y$ be a continuous, pseudo-open, finite to one map of a T_1 semi-developable space X onto Y. Then, Y is a T_1 semi-developable space.

Proof. Let $\{\mathcal{G}_n\}_n$ be a semi-development of X. Since X is T_1 , we have $\bigcap_n St(x,\mathcal{G}_n) = \{x\}$ for each $x \in X$. From the Lemma 2.1 $\{f(\mathcal{G}_n)\}_n$ is an (α_1) sequence in Y and hence Y is T_1 . We may assume that $\mathcal{G}_{n+1} \prec \mathcal{G}_n$ for each n. To claim that $\{f(\mathcal{G}_n)\}_n$ is a semi-development of Y, let $y \in Y$, and U be an open nhd of y. Since $f^{-1}(y) \subset f^{-1}(U)$, $f^{-1}(y)$ is finite, $f^{-1}(U)$ is open and $\mathcal{G}_{n+1} \prec \mathcal{G}_n$ for each n, it follows that $St(f^{-1}(y), \mathcal{G}_n) \subset f^{-1}(U)$ for some n, and consequently $St(y, f(\mathcal{G}_n)) \subset U$. Therefore $\{f(\mathcal{G}_n)\}_n$ is a semi-development in Y.

- Corollary 2.4. Let $f: X \rightarrow Y$ be a continuous, finite to one, pseudoopen map of a Moore space X onto Y. Then Y is a T_1 semi-developable space.
- Note 2.5. Since closed maps are pseudo-open, (α_1) condition and T_1 semi-developability are preserved under closed, continuous, finite to one maps.
- 3. Examples. Example 3.1. There is a hereditarily paracompact space with (α_1) but it does not have G_{δ} diagonal. The image of the Michael line under the Slaughter's map, [14], is such a space. This space has (α_1) , by the Corollary 2.2, but it does not have G_{δ} diagonal, [14].
- Example 3.2. G_{δ} diagonal, quasi- G_{δ} diagonal and (α_1) properties are not preserved under one to one, continuous compact maps. Let N denote the space of non-zero natural numbers with the topology generated by $\{\{2n-1,2n\}|n\geqslant 1\}$. Then, N is a non- T_1 second countable, developable space. Let $D(\aleph_0)=\{x_n|n\geqslant 1\}$ denote a discrete space of power \aleph_0 and let $g:D(\aleph_0)\rightarrow N$ be defined by $g(x_n)=n$ for each n. Then g is a one to one, continuous compact map of $D(\aleph_0)$ onto N. Since N is not T_1 , it follows that it does not have (α_1) , and quasi- G_{δ} diagonal.

Example 3.3. A T_2 compact space satisfying (α_1) need not be metrizable. Let $A(I) = I \cup I'$ be the Alexandroff duplicate of the unit closed interval I = [0,1]. See [7] for the description of A(I). A(I) is a non-metrizable, T_2 compact space. Let $U_n(x) = (x-1/n, x+1/n) \cap I$ for each $x \in I$ and $n \geqslant 1$. $I' = \{x' \mid x \in I\}$. Let $G_n(x) = \{\{y', x\} \mid y \in U_n(x) - \{x\}\}$, $U_n(I) = \{U_n(x) \mid x \in I\}$ and $U_n(I') = \bigcup \{G_n(x) \mid x \in I\}$ for each $n \geqslant 1$. Let $U_n = U_n(I) \cup U_n(I')$ for each $n \geqslant 1$. Then, for each $x \in I$, $St(x, U_n) = [(x-2/n, x+2/n) \cap I] \cup \{y' \mid y \in U_n(x) - \{x\}\}$, $St(x', U_n) = \bigcup \{\{x', y\} \mid y \in U_n(x) - \{x\}\}$. We can verify that $\{U_n\}_n$ is an (α_1) sequence in A(I).

References

- [1] C. C. Alexander: Semi-developable spaces and quotient images of metric spaces. Pacific J. Math., 37(2), 277-293 (1971).
- [2] A. V. Arhangel'skii: On a class of spaces containing all metric spaces and all locally bicompact spaces. Soviet Math. Dokl., 4, 1051-1055 (1963).
- [3] —: Mappings and spaces. Russian Math. Survey, 21(4), 115-162 (1966).
- [4] D. Burke: A non-developable locally compact Hausdorff space with G_{δ} diagonal. Gen. Top. and Appl., 2, 287-291 (1972).
- [5] J. G. Ceder: Some generalizations of metric spaces. Pacific J. Math., 11, 105-125 (1961).
- [6] J. Chaber: Conditions which imply compactness in countably compact spaces. Bull. Acad. Pol. Sci., Ser. Math., 24, 993-998 (1976).
- [7] R. Engelking: On the double circumference of Alexandroff. ibid., 16, 629-634 (1968).
- [8] S. Hanai: On open mappings. II. Proc. Japan Acad., 37, 233-238 (1961).
- [9] G. R. Hiremath: A note on isocompact wM spaces and mappings (preprint).
- [10] R. E. Hodel: Moore spaces and w ≠ spaces. Pacific J. Math., 38 (3), 641-651 (1971).

- [11] T. Ishii and T. Shiraki: Some properties of wM spaces. Proc. Japan Acad., 47, 167-172 (1971).
- [12] E. Michael: A note on closed maps and compact sets. Israel J. Math., 2, 173-176 (1964).
- [13] V. I. Ponomarev: Axioms of countability and continuous mappings. Bull. Acad. Pol. Sci., Ser. Math., 8, 127-133 (1960).
- [14] F. G. Slaughter, Jr.: A note on perpect images of spaces having G_{δ} diagonal (preprint).
- [15] A. H. Stone: Metrizability of decomposition spaces. Proc. Amer. Math. Soc., 7, 690-700 (1956).