76. Counting Points in a Small Box on Varieties

By Masahiko Fujiwara
Department of Mathematics, Ochanomizu University

(Communicated by Kôsaku Yosida, m. J. A., Oct. 12, 1988)
§1. Let $G_{i}\left(X_{1}, \cdots, X_{n}\right) i=1,2, \cdots, s$ be forms with rational integer coefficients of degree ≥ 2 and $n \geq 4$. Let p be a prime and Q a box in R^{n}, Q $=\left\{\boldsymbol{x} \in \boldsymbol{R}^{n} ;\left|x_{i}-a_{i}\right|<B_{i} i=1, \cdots, n\right\}$. Consider a system of congruences

$$
G_{i}\left(X_{1}, \cdots, X_{n}\right) \equiv 0(\bmod p) \quad i=1, \cdots, s
$$

We are interested in the number of solutions $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right)$ of these congruences, lying in a given relatively small box Q in \boldsymbol{R}^{n}. We write $N\left(G_{1}, \cdots, G_{s}, Q\right)$ or $N(\boldsymbol{G}, Q)$ briefly for that number. Namely, $N(\boldsymbol{G}, Q)=\#\left\{\boldsymbol{x} \in \boldsymbol{Z}^{n} \cap Q ; \boldsymbol{G}(\boldsymbol{x}) \equiv 0(\bmod p)\right\}$.
In case $Q=[0, p)^{n}$, there is a classical theorem of Lang and Weil [10] and a far-reaching result of Deligne [6] for nonsingular G. When solutions in a small box Q are considered, a delicate handling is required since there are no nontrivial solutions at all if Q is too small; $X_{1}^{d}+\cdots+X_{n}^{d} \equiv 0(\bmod p)$, d even, has nontrivial solutions only if $\max \left|x_{i}\right| \gg p^{1 / d}$. G. Meyerson [12] and R. C. Baker [1] gave sufficient conditions for $N>1$. On the other hand W. M. Schmidt [5], though not explicitly mentioned, virtually showed that, under certain nonsingularity condition, $N \sim|Q| / p^{s}$ for a cube Q of size $\gg p^{1 / d+\rho_{n}(d)}$, where $|Q|$ is the volume of Q and $\rho_{n}=c_{1}(d) s / n$. He proved this by using his deep result on "incomplete" exponential sums. His result is in a sense best possible. However, n must be very large in order that the theorem is meaningful, since $c_{1}(d)$ is very large at present. W. M. Schmidt [15] also gave a condition of similar type for $N \sim|Q| / p^{s}$, without nonsingular condition. For these, an excellent reference is [2].

In the present paper, we first show that, under some conditions, $N \sim$ $|Q| / p^{s}$ for any large box Q and $n \geq 4$ (Theorem 1). Throughout our paper, nonsingular mod p means nonsingular over the algebraic closure of the finite field with p elements. Let us introduce the following property $P_{G}(p)$. $P_{G}(p)$: the highest degree part of $a_{1} G_{1}+\cdots+a_{s} G_{s}$ is nonsingular $\bmod p$ for all non-zero s-tuples $\left(a_{1}, \cdots, a_{s}\right)$ of integers $(\bmod p)$.
Theorem 1. (a) Let p be a prime, $p \geq B_{1}, \cdots, B_{n} \geq c(n, d, \varepsilon)$ and $|Q| \geq$ $c(n, \boldsymbol{d}, \varepsilon) p^{(n / 2)+s}$. Assume that \boldsymbol{G} defines a variety of $\operatorname{codim} s \bmod p$ and that $P_{G}(p)$ holds. Then

$$
\begin{equation*}
(1-\varepsilon)\left(|Q| / p^{s}\right) \leq N(\boldsymbol{G}, Q) \leq(1+\varepsilon)\left(|Q| / p^{s}\right) \tag{1}
\end{equation*}
$$

(b) Let p be a prime, $p \geq c(n, d, \varepsilon)$ and Q a cube with $|Q| \geq$ $p^{(n / 2)+s-((n-2 s) /(2 n-2))}$. Assume that \boldsymbol{G} defines a nonsingu!ar variety of codim $s \bmod p$ and that $P_{G}(p)$ holds. Then (1) holds.

The proof uses a counting function $F(X)$ introduced later and some

Fourier analysis with Deligne's theorem. We remark here that Theorem 1 generalizes the above-mentioned theorems of G. Meyerson and R.C. Baker. We also note that, $n \geq 4$ suffices above, whereas n should exceed $2^{d+1}(d+1)!s$ in order that Schmidt's theorem should imply (1) for our box Q. The total number of solutions $\boldsymbol{G}(\boldsymbol{x}) \equiv 0(\bmod p)$ is usually $\sim p^{n-s}$ and the expectation for these solutions to fall in a box Q is $\sim|Q| / p^{n}$. Hence, our theorem implies that the rational points of the varieties over finite fields, under a certain nonsingularity condition, are fairly uniformly distributed. We note also that Theorem 1 has any meaning only when $n>2 s$.

Now we consider the property $P_{G}(p)$. For $s=1$, this is nothing but nonsingularity $\bmod p$. However, for $s>1$, even the existence of forms of equal degrees for which $P_{G}(p)$ holds is not obvious. Some examples for $s=2$ have been given in [15]. How often is this arithmetical condition $P_{G}(p)$ satisfied? We first introduce a terminology. For positive integers n, d_{1}, \cdots, d_{s} and r, let $S(n, \boldsymbol{d}, r)$ be the set of s-tuples of forms of respective degrees d_{1}, \cdots, d_{s} with heights $\leq r$ in $Z\left[X_{1}, \cdots, X_{n}\right]$. We say "for almost all s-tuples of forms of degree d " in the sense "for all s-tuples of forms in $S(n, \boldsymbol{d}, r)$ with $0\left(|S(n, \boldsymbol{d}, r)|^{1-\delta}\right)$ exceptions, where 0 and $\delta>0$ are independent of r ". Our theorem on $P_{G}(p)$ is the following.

Theorem 2. Let G_{1}, \cdots, G_{s} be forms of degrees d in $Z\left[X_{1}, \cdots, X_{n}\right]$.
(a) $s=2$. For almost all G_{1} and G_{2}, there exists a set of primes with positive density such that, for any p of the set, $P_{G}(p)$ holds.
(b) $s \geq 3$. For almost all $G_{1}, \cdots, G_{s}, P_{G}(p)$ is not true for all but a finite number of primes p.

This theorem states that $P_{G}(p)$ is often satisfied when $s=1$ or 2 , but not when $s \geq 3$, (b) might be rather unexpected since $P_{G}(p)$ was supposed to be fairly common [15]. The proof relies on resultant theory together with Bertini's theorem, Hilbert irreducibility theorem and Chebotarev density theorem.

Let us turn our attention to the number $N^{\prime}(G, Q)$ of integer solutions of $\boldsymbol{G}(\boldsymbol{X})=0$ in a given box Q in \boldsymbol{R}^{n}. Namely,

$$
N^{\prime}(\boldsymbol{G}, Q)=\sharp\left\{\boldsymbol{x} \in \boldsymbol{Z}^{n} \cap Q ; G_{1}(\boldsymbol{x})=\cdots=G_{s}(\boldsymbol{x})=0\right\} .
$$

The following Theorem 3 generalizes our previous result [7] to simultaneous forms. This theorem is, as was Theorem 1, meaningful only when $n>2 s$. In the following, we call a box Q slim if some side of Q is <1 or $>|Q|^{2 /(n+2 s)}$. Obviously cubes are not slim.

Theorem 3. (a) Suppose G_{1}, \cdots, G_{s} define a variety of codim s. Assume also that there exists a set of primes with positive density such that $P_{G}(p)$ holds for any p of the set. Then

$$
N^{\prime}(\boldsymbol{G}, Q) \leq c(n, \boldsymbol{d})|Q|^{n /(n+2 s)},
$$

provided that Q is not slim and $|Q|$ large.
(b) Suppose furthermore that \boldsymbol{G} is nonsingular over \boldsymbol{C}. Then, for any large cube of size B,

$$
N^{\prime}(G, Q) \leq c(n, d) B^{n-2 s+((4 s 2-2 s) /(n+2 s-2))}
$$

We remark here that, in (b), our estimate is better than the trivial estimate B^{n-s} as long as $n>2 s$. Our estimate becomes close to the conjectural best bound $B^{n-2 s}$ as n becomes large compared with s.

In view of Theorem 2, we can easily prove the following corollaries.
Corollary 1. (a) Suppose G_{1}, \cdots, G_{s} define a variety of codim s. Assume each G_{i} 's are nonsingular and have distinct degrees. Then,

$$
N^{\prime}(\boldsymbol{G}, Q) \leq c(n, \boldsymbol{d})|Q|^{n /(n+2 s)},
$$

provided that Q is not slim and $|Q|$ large.
(b) Suppose furthermore that \boldsymbol{G} is nonsingular over \boldsymbol{C}. Then, for any large cube of size B,

$$
N^{\prime}(\boldsymbol{G}, Q) \leq c(n, \boldsymbol{d}) B^{n-2 s+\left(\left(4 s^{2}-2 s\right) /(n+2 s-2)\right)} .
$$

Corollary 2. (a) Suppose G is nonsingular over C. Then

$$
N^{\prime}(G, Q) \leq c(n, d)|Q|^{n /(n+2)},
$$

provided that Q is not slim and $|Q|$ large.
(b) If in particular Q is a large cube of size B, then

$$
N^{\prime}(G, Q) \leq c(n, d) B^{n-2+(2 / n)}
$$

Corollary 3. (a) For almost all forms G_{1}, G_{2} of degrees d_{1}, d_{2},

$$
N^{\prime}(\boldsymbol{G}, Q) \leq c(n, d)|Q|^{n /(n+4)},
$$

provided that Q is not slim and $|Q|$ large.
(b) If in particular Q is a large cube of size B, then

$$
N^{\prime}(\boldsymbol{G}, Q) \leq c(n, d) B^{n-4+(12 / n+2)} .
$$

We remark here that Corollary 2-(b) is nothing but our previous result [7] except for the effective constants there. It should be noted that our method does not allow us to obtain a similar result to Corollary 3 for $s \geq 3$, since $P_{G}(p)$ fails for almost all \boldsymbol{G} and almost all p 's by virtue of Theorem 2 .
§2. An outline of the proofs. In the proof of Theorem 1, the following "counting function" $F(X)$ plays an important role.

$$
F(X)= \begin{cases}2^{n} \prod_{i=1}^{n}\left(1-\left|X_{i}\right|\right) & \text { if }\left|X_{i}\right| \leq 1 \quad i=1, \cdots, n \\ 0 & \text { otherwise }\end{cases}
$$

In the following, we write $|Q|$ for the volume of $Q=\left\{\boldsymbol{x} \in \boldsymbol{R}^{n} ;\left|x_{i}-a_{i}\right|<B_{i}\right.$ $i=1, \cdots, n\}$ and, for n-dimensional vectors $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right)$ and $\boldsymbol{B}=$ $\left(B_{1}, \cdots, B_{n}\right)$, we write $\boldsymbol{B}^{-1} \boldsymbol{x}=\left(B_{1}^{-1} x_{1}, \cdots, B_{n}^{-1} x_{n}\right)$. The next lemma shows that, under some conditions.

$$
N(G, Q) \sim \sum_{\substack{x \in \mathbb{Z}^{n} \\ p \mid G(x)}} F\left(\boldsymbol{B}^{-1}(\boldsymbol{x}-\boldsymbol{a})\right) .
$$

Lemma 1. Assume that, for any prime p and a box (resp. a cube) Q satisfying $p \geq B_{1}, \cdots, B_{n} \geq c_{1}(n, \boldsymbol{d}, \varepsilon)$ and $|Q| \geq c_{1}(n, \boldsymbol{d}, \varepsilon) p^{\alpha}$, the following holds.

$$
(1-\varepsilon) \frac{|Q|}{p^{s}} \leq \sum_{\substack{x \in \in \in n \\ p| |(x)}} F\left(\boldsymbol{B}^{-1}(\boldsymbol{x}-\boldsymbol{a})\right) \leq(1+\varepsilon) \frac{|Q|}{p^{s}}
$$

Then, for any prime p and a box (resp. a cube) Q satisfying $p \geq B_{1}, \cdots, B_{n}$ $\geq c_{2}(n, \boldsymbol{d}, \varepsilon)$ and $|Q| \geq c_{2}(n, \boldsymbol{d}, \varepsilon) p^{\alpha}$, the following holds.

$$
(1-\varepsilon)\left(|Q| / p^{s}\right) \leq N(G, Q) \leq(1+\varepsilon)\left(|Q| / p^{s}\right) .
$$

Using Lemma 1 and Deligne's estimate on exponential sums [6], to-
gether with Poisson summation formula, Theorem 1 can be proved. In the proof of Theorem 2, the key is the following lemma.

Lemma 2. Suppose that G is a form of degree d over K,

$$
G\left(X_{0}, \cdots, X_{n}\right)=\sum_{i_{0}+\cdots+i_{n}=d} a_{i_{0} \cdots i_{n}} X_{0}^{i_{0}} \cdots X_{n}^{i_{n}}, \quad\left(\alpha_{i_{0} \cdots i_{n}} \in K\right)
$$

Then, there exists a form R of degree >1 with integral coefficients in variables $A_{i_{0} \cdots i_{n}}\left(i_{0}+\cdots+i_{n}=d\right)$, irreducible over C, such that G is singular over \bar{K} if and only if $R\left(a_{i_{0} \ldots i_{n}}\right)=0$ in K. Moreover, this R is independent of the field K in the sense that if char $K=0$, it is a fixed form with integer coeffcients; while if char $K=p(\neq 0)$, it is obtained by reducing the integer coefficients modulo p.

The well known resultant satisfies all the properties of Lemma 2 except for absolute irreducibility. Therefore the crucial point of the lemma lies in the absolute irreducibility. We prove that this resultant is a power of some absolutely irreducible form. The proof uses classical algebraic geometry [17]. On the other hand, the proof of Theorem 2 involves Bertini theorem [8], Hilbert irreducibility theorem [11] and Chebotarev density theorem (§3, Chapter 8, [4]). Theorem 3 is proved as an application of Theorem 1. Corollaries 1 and 2 are almost immediate consequences of Theorem 3. The proof of Corollary 3 relies on Theorem 2 and Theorem 3. The details of proofs will appear elsewhere.

References

[1] R. C. Baker: Mathematika, 30, 164-188 (1983).
[2] -: Oxford Science Publications. Clarendon Press, Oxford (1986).
[3] B. J. Birch: Mathematika, 4, 102-105 (1957).
[4] J. W. S. Cassels and A. Fröhlich: Algebraic Number Theory. Academic Press, London (1967).
[5] S. D. Cohen: Proc. London Math. Soc., (3) 43, 227-250 (1981).
[6] P. Deligne: Publ. Math. IHES., 43, 273-307 (1973).
[7] M. Fujiwara: Number Theory and Combinatroics (eds. Akiyama et al.). World Sci. Publ., Hong Kong, pp. 89-96 (1985).
[8] R. Hartshorne: Algebraic Geometry. Springer, New York (1977).
[9] D. R. Heath-Brown: Proc. London Math. Soc., (3) 47, 225-257 (1983).
[10] S. Lang and A. Weil: Amer. J. Math., 76, 819-827 (1954).
[11] S. Lang: Fundamentals of Diophantine Geometry. Springer, New York (1983).
[12] G. Meyerson: Mathematika, 28, 153-159 (1981).
[13] W. M. Schmidt: Lecture Notes in Math., vol. 536, Springer, Berlin (1976).
[14] -: Analytische Methoden für Diophantische Gleichungen. DMV Seminar Band 5, Birkhäuser (1984).
[15] -: Diophantine Analysis (eds. J. H. Loxton and A. J. Van der Poorten). Cambridge University Press (1986).
[16] -_: Mh. Math., 102, 27-58 (1986).
[17] B. L. Van der Waerden: Grundl. der Math. Wiss., Dover, New York (1945).

