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1. Let G,(X, ., X) i= 1, 2, ., s be forms with rational integer
coefficients of degree >_2 and n>_4. Let p be a prime and Q a. box in Rn, Q
-{x e R ;Ix,--a,lB, i=1, ..., n}. Consider a. system of congruences

G,(X, Xn)==_ O (rood p) i--l, ...,s.
We are interested in the number of solutions x=(x,.. ",Xn) of these

congruences, lying in a given relatively small box Q in R. We write
N(G, ..., G,, Q) or N(G, Q) briefly for that number. Namely,

N(G, Q)--{x e Z Q G(x)--O (mod p)}.
In case Q--[0, p)n, there is a classical theorem of Lang and Weil [10] and a
far-reaching result of Deligne [6] for nonsingular G. When solutions in
a. small box Q are considered, a delicate handling is required since there
are no nontrivial solutions at all if Q is too small X+... +Xn----0 (mod p),
d even, has nontrivial solutions only if max Ixl>>pTM. G. Meyerson [12]
and R. C. Baker [1] gave sufficient conditions for N>I. On the other hand
W. M. Schmidt [5], though not explicitly mentioned, virtually showed that,
under certain nonsingularity condition, NIQI/p for a cube Q of size
>>p/*+p*, where QI is the volume of Q and p= c(d)s/n. He proved this
by using his deep result on "incomplete" exponential sums. His result is
in a sense best possible. However, n must be very large in order that the
theorem is meaningful, since c(d) is very large at present. W. M. Schmidt
[15] also gave a condition of similar type for N-[Q]/p, without nonsin-
gular condition. For these, an excellent reference is [2].

In the present paper, we first show that, under some conditions, N
Ql/p for any large box Q and n>_4 (Theorem 1). Throughout our paper,
nonsingular modp means nonsingular over the algebraic closure of the
finite field with p elements. Let us introduce the following property P(p).
P(p)" the highest degree part of aG +... + aG, is nonsingular mod p

for all non-zero s-tuples (a,..., a) of integers (mod p).
Theorem 1. (a) Let p be a prime, p>_B1, ., Bn>_c(n, d, ) and

c(n, d, ,)p(/2/,. Assume that G defines a variety of codim s mod p and that
Po(P) holds. Then
( 1 ) (1--e)(]el/pS)<_Y(G, Q)<_(I+D([QI/p*).

(b) Let p be a prime, p>_c(n,d,e) and Q a cube with
p(n/2)+8-((n-2)/(2-2)). Assume that G defines a nonsingu!ar variety of codim
s mod p and that Po(p) holds. Then (1) holds.

The proof uses a counting function F(X) introduced later and some
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Fourier analysis with Deligne’s theorem. We remark here that Theorem
1 generalizes the above-mentioned theCrems o G. Meyerson and R. C.
Baker. We also note that, n4 suffices above, whereas n should exceed
2/(d+l)! s in order that Schmidt’s theorem should imply (1) or our box
Q. The total number of solutions G(x)=O (modp) is usually p- and
the expectation or these solutions to all in a box Q is IQI/p. Hence,
our theorem implies that the rational points o the varieties over finite
fields, under a certain nonsingularity condition, are airly uniformly dis-
tributed. We note also that Theorem 1 has any meaning only when n2s.

Now we consider the property P(p). For s--l, this is nothing but
nonsingularity mod p. However, for sl, even the existence of orms o
equal degrees or which P(p) holds is not obvious. Some examples or s--2
have been given in [15]. How oten is this arithmetical condition P(p)
satisfied? We first introduce a terminology. For positive integers n, d,, d and r, let S(n, d, r) be the set o s-tuples of orms o respective de-
grees d, ..., d with heights _r in Z[X, .., X]. We say "or almost all
s-tuples o orms o degree d" in the sense "or all s-tuples o orms in
S(n, d, r) with O(]S(n, d, r)l-) exceptions, where 0 and0 are independent
of r". Our theorem on P(p) is the ollowing.

Theorem 2. Le$ G, ..., G be forms of degrees d in Z[X, .,X].
(a) s--=2. For almos$ all G and G, $here exists a se of primes wi$h

ositive density such $ha$, for any p of $he set, P(p) holds.
(b) s3. For almost all G, ..., G, P(p) is no$ rue foe all bu a finite

number of primes p.
This thecrem states that P(p) is oten satisfied when s--1 or 2, but

not when s3, (b)might be rather unexpected since P(p) was supposed
to be airly common [15]. The proo relies on resultant theory together
with Bertini’s thecrem, Hilbert irreducibility theorem and Chebotarev
density theorem.

Let us turn our attention to the number N’(G, Q) o integer solutions
o G(X)=0 in a given box Q in Rn. Namely,

N’(G, Q)={x e z Q G(x) G,(x)=0}.
The following Theorem 3 generalizes our previous result [7] to simul-

taneous orms. This theorem is, as was Theorem 1, meaningful only when
n2s. In the ollowing, we call a box Q slim if some side of Q is 1 or

IQ]/(n+s). Obviously cubes are not slim.
Theorem :. (a) Suppose G, ..., G, define a variety of codim s. As-

sume also that there exists a set of primes with positive density such that
P(p) holds for any p of the set. Then

N’(G, Q) c(n, d)IQI/(+),
provided that Q is not slim and lQI large.

(b) Suppose furthermore that G is nonsingular over C. Then, for any
large cube of size B,

N’(G, Q)<_ c(n, d)Bn-+ ((4s-2s)/(n+2s-2)).
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We remark here that, in (b), our estimate is better than the trivial
estimate B as long as n2s. Our estimate becomes close to the conjec-
tural best bound Bn- as n becomes large compared with s.

In view o Theorem 2, we can easily prove the ollowing corollaries.
Corollary 1. (a) Suppose Ga, "", G define a variety of codim s. As-

sume each G’s are nonsingular and have distinct degrees. Then,
N’(G, Q) c(n, d)IQ]//,

provided that Q is not slim and lQI large.
(b) Suppose furthermore that G is nonsingular over C. Then, for

any large cube of size B,
N’(G, Q) c(n, g)Bn-s+((s-s)/(n+s-)).

Corollary 2. (a) Suppose G is nonsingular over C. Then
N’(G, Q) c(n, d)IQIn/(n+),

provided that Q is not slim and Q] large.
(b) If in particular Q is a large cube of size B, then

N’(G, Q)_ c(n, d)Bn-

Corollary 3. (a) For almost all forms Ga, G. of degrees da, d,
N(G, Q) c(n, d)IQIn/(/),

provided that Q is not slim and [Q] large.
(b) If in particular Q is a large cube of size B, then

N’(G, Q)_ c(n, d)B-/(// ).

We remark here that Corollary 2-(b) is nothing but our previous result
[7] except for the effective constants there. It should be noted that our
method does not allow us to obtain a similar result to Corollary 3 for s3,
since Pa(p) fails for almost all G and almost all p’s by virtue of Theorem 2.

2. An outline of the proofs. In the proof of Theorem 1, the fol-
lowing "counting function" F(X) plays an important role.

F(X)=!2[(1-]X])__1 if,X,_l i=l, ., n
[o otherwise.

In the ollowing, we write ]Q] or the volume o Q={x
i=1, ...,n} and, or n-dimensional vectors x=(x, ...,x) and B=
(B, ...,B), we write B-x= (Bx, .,BlXn). The next lemma shows
that, under some conditions.

N(G,Q). F(B-(x--a)).
xZ
piG(x)

Lemma 1. Assume that, for any prime p and a box (resp. a cube) Q
satisfying pBi, ", Bn._ ca(n, d, ) and QIc(n, d, DP", the following holds.

Ip:QI <_+z F(B-l(x--a))<-- (I+D. IQIp:(l-s)

Then, for any prime p and a box (resp. a cube) Q satisfying pB, ...,
c2(n, d, ) and QIc.(n, d, e)p, the following holds.

(1-D(IQI/pg_N(G, Q)_ (I+D([QI/pg.
Using Lemma I and Deligne’s estimate on exponential sums [6J, to-
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gether with Poisson summation formula, Theorem 1 can be proved. In
the proof of Theorem 2, the key is the following lemma.

Lemma 2. Suppose that G is a form of degree d over K,
G(Xo, ..., X)= a,o...,Xg X, (a,o..., e K).

io+’"+in=d

Then, there exists a form R of degree > 1 with integral coefficients in vari-
ables Aio...in (i0+""" +in=d), irreducible over C, such that G is singular over

if and only if R(aio...in)=0 in K. Moreover, this R is independent of the
field K in the sense that if char K=0, it is a fixed form with integer coeffi-
cients while if char K-p(=/=O), it is obtained by reducing the integer coe-
.cients modulo p.

The well known resultant satisfies all the properties of Lemma 2 except
for absolute irreducibility. Therefore the crucial point of the lemma lies
in the absolute irreducibility. We prove that this resultant is a power of
some absolutely irreducible form. The proof uses classical algebraic ge-
ometry [17]. On the other hand, the proof of Theorem 2 involves Bertini
theorem [8], Hilbert irreducibility theorem [11] and Chebotarev density
theorem ( 3, Chapter 8, [4]). Theorem 3 is proved as an application of
Theorem 1. Corollaries 1 and 2 are almost immediate consequences of
Theorem 3. The proof of Corollary 3 relies on Theorem 2 and Theorem 3.
The details of proofs will appear elsewhere.
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