67. Cyclotomic Invariants for Links ${ }^{\text {t1, ti) }}$

By Tsuyoshi Kobayashi,*) Hitoshi Murakami,**) and Jun Murakami*)

(Communicated by Kôsaku Yosida, m. J. A., Sept. 12, 1988)

In this note we construct numerical link invariants (cyclotomic invariants) by using solutions to the star-triangle relation for an N-state IRF model on a two-dimensional square lattice ($N=1,2, \cdots$) [3, 6]. Moreover we will show that these invariants can be defined by using Goeritz matrices and Seifert matrices. We also describe some of their properties; especially relations to the Jones polynomial [5], the Q-polynomial [1, 4], and the Kauffman polynomial [7].

Let $w(a, b, c, d ; u)$ be the cyclotomic solution described in [6]. We consider a dual graph of an (unoriented) link diagram on a 2 -sphere S^{2}. It decomposes S^{2} into some regions and every region can be regarded as a tetragon. So we can assign to each region (or face) the Boltzmann weight $w(a, b, c, d ; u)$ for every state on the graph as in Fig, 1. Here a state is an assignment of elements in $Z / N Z$ to vertices in the graph.

Fig. 1
This is well-defined since $w(a, b, c, d ; u)=w(c, d, a, b ; u)$ [6]. If we take the limit $u \rightarrow \infty \times \sqrt{-1}$ of $w(a, b, c, d ; u)$, the partition function $Z_{N}=$ $\sum \prod w(a, b, c, d ; u)$ is invariant under the Reidemeister moves $\Omega_{3}^{ \pm 1}$ of the link diagram, where the product is taken over all the vertices of the dual graph and the sum is taken over all the states. This follows from the star-triangle relation. See [6, Fig. 2]. See also [2] for the Reidemeister moves.

[^0]Now we can define the partition function directly from the link diagram as follows. Let D be a diagram on S^{2} of a link in S^{3}. Color the regions of D with colors α and β like a chess-board. Let $\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n}$ be the α-regions and $\beta_{0}, \beta_{1}, \cdots, \beta_{m}$ the β-regions. Then we can define an extended Goeritz matrix $\bar{G}=\left(g_{i j}\right)(0 \leqq i, j \leqq n)$ with entries $g_{i j}$ described in [2, p. 230]. Note that $G=\left(g_{i j}\right)(1 \leqq i, j \leqq n)$ is a Goeritz matrix if we take $\infty \in \boldsymbol{R}^{2} \cup\{\infty\}=S^{2}$ in α_{0}. Next we interchange the colors (now $\beta_{0}, \beta_{1}, \cdots, \beta_{m}$ are the α-regions) and define another extended Goeritz matrix $\bar{G}^{\prime}=\left(g_{i j}^{\prime}\right)$ $(0 \leqq i, j \leqq m)$. ($G^{\prime}=\left(g_{i j}^{\prime}\right)(1 \leqq i, j \leqq m)$ is also a Goeritz matrix.) The partition function $Z_{N}(D)$ corresponding to the dual graph of D is now defined as follows.

$$
Z_{N}(D)=\sum_{X, X^{\prime}}\left\{(-1)^{g X^{T} T} q^{X \bar{G} X^{T} T}\right\} \times\left\{(-1)^{g^{\prime} X^{\prime} T} q^{X^{\prime} \bar{G}^{\prime} X^{\prime} T}\right\}
$$

where $q=\exp (\pi \sqrt{-1} / N), \bar{g}=\left(g_{00}, g_{11}, \cdots, g_{n n}\right), \bar{g}^{\prime}=\left(g_{00}^{\prime}, g_{11}^{\prime}, \cdots, g_{m m}^{\prime}\right), X$ (resp. X^{\prime}) ranges over all $1 \times(n+1)$ (resp. $1 \times(m+1)$) matrices with entries in $Z / N Z$, and X^{T} and $X^{\prime T}$ are the transposed matrices.

Since $P \bar{G} P^{T}=\left(\begin{array}{ll}0 & O \\ O & G\end{array}\right)$ and $P^{\prime} \bar{G}^{\prime} P^{\prime T}=\left(\begin{array}{ll}0 & O \\ O & G^{\prime}\end{array}\right)$ for some unimodular matrices of integers P and P^{\prime}, we have

$$
Z_{N}(D)=N^{2} \times \sum_{Y, Y^{\prime}}\left\{(-1)^{g^{Y T}} q^{Y G Y T}\right\} \times\left\{(-1)^{g^{\prime} Y^{\prime T}} q^{Y^{\prime} G^{\prime} Y^{\prime T}}\right\}
$$

where $g=\left(g_{11}, g_{22}, \cdots, g_{n n}\right), g^{\prime}=\left(g_{11}^{\prime}, g_{22}^{\prime}, \cdots, g_{m m}^{\prime}\right)$, and Y (resp. Y^{\prime}) ranges over all $1 \times n$ (resp. $1 \times m$) matrices with entries in $Z / N Z$. Now we consider an oriented link and its diagram D. Put

$$
\tilde{T}_{N}(D)=N^{-2}\left(\delta_{N} / \sqrt{N}\right)^{-w(D)} \times(\sqrt{N})^{-c(D)} \times Z_{N}(D)
$$

where $\delta_{N}=\sum_{k=0}^{N-1}(-1)^{k} q^{k 2}, w(D)$ is the writhe of D (i.e. the algebraic sum of the crossings with ${ }^{\chi} X$ being +1 and $\chi^{\pi}-1$), and $c(D)$ is the number of the crossings in D. Then we have

Theorem 1. For every integer N greater than one, $\tilde{T}_{N}(D)$ is an oriented link type invariant; i.e. if D and D^{\prime} are diagrams of the same oriented link, then $\tilde{T}_{N}(D)=\tilde{T}_{N}\left(D^{\prime}\right)$.

Proof. The invariance under the Reidemeister moves $\Omega_{3}^{ \pm 1}$ follows from [6]. Since the invariance under $\Omega_{1}^{ \pm 1}$ and $\Omega_{2}^{ \pm 1}$ follows from direct computations, we omit it. Note that we can also prove the invariance under $\Omega_{3}^{ \pm 1}$ using Goeritz matrices.

From now on we use the notation $\tilde{T}_{N}(L)$ instead of $\tilde{T}_{N}(D)$ for an oriented link L which is represented by D.

Next we use L. Traldi's modified Goeritz matrix [12] to define a "square root" of \tilde{T}_{N}. Let $H=\left(h_{i j}\right)(1 \leqq i, j \leqq d)$ be a modified Goeritz matrix of an oriented link L [12]. Put

$$
T_{N}(L)=(\sqrt{N})^{-d} \sum_{X}\left\{(-1)^{h X^{T}} q^{X H X^{T}}\right\}
$$

where $h=\left(h_{11}, h_{22}, \cdots, h_{d d}\right)$ and X ranges over all $1 \times d$ matrices with entries in $Z / N Z$. This is well-defined (that is, independent on the choice of diagram) from [12, Theorem 1]. We call $\tilde{T}_{N}(L)$ and $T_{N}(L)$ the cyclotomic invariants for $L . \quad T_{N}$ is a square root of \tilde{T}_{N} since the following holds.

Theorem 2. $\left\{T_{N}(L)\right\}^{2}=\tilde{T}_{N}(L)$.
Proof. We can define two modified Goeritz matrices from a diagram of L considering two types of colorings. Then the theorem follows from the definition of the modification of the Goeritz matrix in [12]. Details are omitted.

Since a modified Goeritz matrix H equals $W+W^{T}$ for some Seifert matrix W of L defined by using a connected Seifert surface [12] (see for example [2] for the definition of a Seifert matrix), we have

Proposition 1. Let $W=\left(w_{i j}\right)(1 \leqq i, j \leqq d)$ be a Seifert matrix of L, then

$$
T_{N}(L)=(\sqrt{N})^{-d} \sum_{X} q^{X\left(W+W^{T}\right) X^{T}}
$$

where X ranges over all $1 \times d$ matrices with entries in $Z / N Z$.
From Proposition 1, we obtain the following theorem.
Theorem 3. Let $V_{L}(t)$ be the Jones polynomial of L [5]. Then we have
(1) $T_{2}(L)=V_{L}(\sqrt{-1})$,
(2) $T_{3}(L)=V_{L}(\exp (\pi \sqrt{-1} / 3))$, and
(3) $\left|T_{p}(L)\right|=(\sqrt{p})^{\beta_{p}(L)}$
for an odd prime integer p, where $\beta_{p}(L)$ is the first Betti number of the double branched cover of L with coefficient in $\boldsymbol{Z} / p \boldsymbol{Z}$. We can also determine the argument of $T_{p}(L)$ using invariants of a quadratic form (cf. [10]).

Proof. (1) and (2) follow from the recursive definition of $V_{L}(t)$ [5]. To prove (3), we remark that we may change $W+W^{T}$ into $P\left(W+W^{T}\right) P^{T}$ for any unimodular matrix of integers P and the entry $w_{i j}+w_{j i}$ in $W+W^{T}$ by N (resp. $2 N$) if $i \neq j$ (resp. $i=j$) when we define $T_{N}(L)$ as in Proposition 1. So we can diagonalize $W+W^{T}$ and the conclusion follows since it is a presentation matrix for the first homology group of the double branched cover of L.

Let $F_{L}(a, x)$ be the Kauffman polynomial [7] and $Q_{L}(x)$ the Q-polynomial $[1,4]$. Then from [1, 8, 9, 11] and Theorem 2 we have

Corollary.

$$
\text { (1) } \begin{aligned}
\tilde{T}_{2}(L) & = \begin{cases}2^{\sharp(L)-1} & \text { (if L is proper) } \\
0 & \text { (otherwise })\end{cases} \\
& =F_{L}(\exp (\pi \sqrt{-1} / 4),-\sqrt{2}) \times(-1)^{\sharp(L)-1},
\end{aligned}
$$

where $\#(L)$ is the number of components in L and L is proper if the linking number of K and $L-K$ is even for every component K in L.
(2) $\quad \tilde{T}_{3}(L)=Q_{L}(-1) \times(-1)^{\#(L)-1}=(-3)^{\beta_{3}(L)} \times(-1)^{\#(L)-1}$.

For the interpretation for $V_{L}(\sqrt{-1})$ see [11] and for $V_{L}(\exp (\pi \sqrt{-1} / 3))$ see $[8,10]$.

Finally we remark that the cyclotomic invariants are essentially invariants for quadratic forms. So we can define them for more general situations; for example, links in homology spheres and higher dimensional links. We also remark that we may take q to be any primitive $2 N$-th root of 1 , which is suggested by T. Kohno.

Acknowledgement. The authors wish to thank Professor Y. Nakanishi for his helpful advice.

References

[1] R. D. Brandt, W. B. R. Lickorish, and K. C. Millett: A polynomial invariant for unoriented knots and links. Invent. Math., 84, 563-573 (1986).
[2] G. Burde and H. Zieschang: Knots. Walter de Gruyter, Berlin and New York (1985).
[3] V. A. Fateev and A. B. Zamolodchikov: Self-dual solutions of the star-triangle relations in Z_{N}-models. Phys. Lett., 92A, 37-39 (1982).
[4] C. F. Ho: A new polynomial invariant for knots and links-preliminary report. Amer. Math. Soc., Abstract 6, p. 300 (1985).
[5] V. F. R. Jones: A polynomial invariant for knots via von Neumann algebras. Bull. Amer: Math. Soc., 12, 103-111 (1985).
[6] M. Kashiwara and T. Miwa: A class of elliptic solutions to the star-triangle relation. Nucl. Phys., B275[FS17], 121-134 (1986).
[7] L. H. Kauffman: An invariant of regular isotopy. Topology (to appear).
[8] W. B. R. Lickorish and K. C. Millett: Some evaluations of link polynomials. Comment. Math. Helv., 61, 349-359 (1986).
[9] -: An evaluation of the F-polynomial of a link (preprint).
[10] A. S. Lipson: An evaluation of a link polynomial. Math. Proc. Camb. Phil. Soc., 100, 361-364 (1986).
[11] H. Murakami: A recursive calculation of the Arf invariant of a link. J. Math. Soc. Japan, 38, 335-338 (1986).
[12] L. Traldi: On the Goeritz matrix of a link. Math. Z., 188, 203-213 (1985).

[^0]: ${ }^{\dagger}$) Partially supported by Grant-in-Aid for Scientific Research (No. 62790098), Ministry of Education, Science and Culture, Japan.
 ${ }^{\dagger t)}$ Dedicated to Professor Fujitsugu Hosokawa on his 60th birthday.
 *) Department of Mathematics, Osaka University.
 **) Department of Mathematics, Osaka City University.

