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67. Cyclotomic Invariants for Links’**

By Tsuyoshi KOBAYASHI,*) Hitoshi 1VIURAKAMI,**) and Jun MURAKAMI*)

(Communicated by KSsaku YOSIDA, M..l.A., Sept. 12, 1988)

In this note we construct numerical link invariants (cyclotomic invar-
iants) by using solutions to the star-triangle relation or an N-state IRF
model on a two-dimensional square lattice (N--l, 2,-..) [3, 6]. Moreover
we will show that these invariants can be defined by using Goeritz matrices
and Seifert matrices. We also describe some o their properties especially
relations to the Jones polynomial [5], the Q-polynomial [1,4], and the
Kauffman polynomial [7].

Let w(a, b, c, d; u) be the cyclotomic solution described in [6]. We
consider a dual graph o an (unoriented) link diagram on a 2-sphere S.
It decomposes S into some regions and every region can be regarded as a
tetragon. So we can assign to each region (or ace) the Boltzmann weight
w(a, b, c, d;u) or every state on the graph as in Fig, 1. Here a state
is an assignment o elements in Z/NZ to vertices in the graph.
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link diagram dual graph

Fig. 1

This is well-defined since w(a, b, c, d; u)-w(c, d, a, b u) [6]. If we take
the limit u-+ooL-i of w(a,b,c,d; u), the partition function Z-
l-[w(a, b, c, d;u) is invariant under the Reidemeister moves 2+/- of the
link diagram, where the product is taken over all the vertices of the dual
graph and the sum is taken over all the states. This follows from the
sta.r-triangle rela.tion. See [6, Fig. 2]. See also [2] for the Reidemeister
moves.
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Now we can define the partition function directly from the link
diagram as follows. Let D be a diagram on S of a link in S. Color the
regions of D with colors a and like a chess-board. Let a0, a, "", c be
the a-regions and/0,/, ", the -regions. Then we can define an ex-
tended Goeritz matrix G=(g)(0=<i, ]<=n)with entries g described in
[2, p. 230]. Note that G-(g) (1_<_i, ]<=n) is a Goeritz matrix if we take
c eRiJ{c}=S in a0. Next we interchange the colors (now/0,/, ",/
are the a-regions) and define another extended Goeritz matrix G’=(g)
(O<=i, ]<=m). (G’=(g) (1_<_i, ]<=m) is also a Goeritz matrix.) The parti-
tion function Zv(D) corresponding to the dual graph of D is now defined
as follows.

Zv(D)-- ] {(-- 1)X’qxx’} {(-- 1)’x’’qX’’x’’},
X,X’

where q= exp (/- 1 /N), Y---- (goo, ga, gnn), t (goo; g; ., g,); X (resp.
X’) ranges over all l(n+l) (resp. l(m+l)) matrices with entries in
Z/NZ, and Xr and X’r are the transposed matrices.

Since PPr=( )and P’’P’=(O0 ,)for someunimodularma-

trices of integers P and P’, we have
ZN(D)=Nx {(--1)rqrr} {(-- 1)r’qr’’r’},

Y,Y’

where g g, .., g), and Y (resp. Y’)ranges
over all 1n (resp. 1m) matrices with entries in Z/NZ. Now we con-
sider an oriented link and its diagram D. Put

’(D)=N-(//-N )- () X (/X )- () X Z(D),
where 6--0 (--1)q, w(D) is the writhe of D (i.e. the algebraic sum
o the crossings with being +1 and -1), and c(D) is the number of
the crossings in D. Then we have

Theorem 1. For every integer N greater than one, (D) is an ori-
ented link type invariant i.e. if D and D’ are diagrams of the same oriented
link, then T(D)= T(D’).

Proof. The invariance under the Reidemeister moves 9+l fOllOws from
[6]. Since the invariance under 9: and 9" follows from direct computa-
tions, we omit it. Note that we can also prove the invariance under t21

using Goeritz matrices.
From now on we use the notation Tu(L) instead of Tu(D) for an ori-

ented link L which is represented by D.
Next we use L. Traldi’s modified Goeritz matrix [12] to define a

"square root" of T. Let H=(h) (1__<i, ]<=d) be a modified Goeritz matrix
of an oriented link L [12]. Put

T(L) (/N )- {(-- 1)XqXX},

where h= (h, h, .., haa) and X ranges over all 1 d mtriees with entries
in Z/NZ. This is well-defined (that is, independent on the choice of dia-
gram) rom [12, Theorem 1]. We call Tu(L) and Tu(L) the cyclotomic
invariants or L. Tu is a square root of T since the following holds.
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Theorem 2. {T(L)}- T(L).
Proof. We can define two modified Goeritz matrices from a diagram

of L considering two types of colorings. Then the theorem follows from
the definition of the modification of the Goeritz matrix in [12]. Details
are omitted.

Since a modified Goeritz matrix H equals W-FWr for some Seifert
matrix W of L defined by using a connected Seifert surface [12] (see or
example [2] or the definition of a Seifert matrix), we have

Proposition 1. Let W=(w) (1<=i, ]<=d) be a Seifert ,matrix of L, then
T(L)=(/ N )- qXW+w)x,

X

where X ranges over all 1 d matrices with entries in Z/NZ.
From Proposition 1, we obtain the following theorem.
Theorem 3. Let V(t) be the Jones polynomial of L [5]. Then we have
(1) T(L)-- V(/- 1),
(2) T(L)--V (exp (zr/- 1/3)), and
(3) [T(L) I=

for an odd prime integer p, where fl(L) is the first Betti number of the
double branched cover of L with coefficient in Z/pZ. We can also deter-
mine the argumen$ of T(L) using invariants of a quadratic form (cf. [10]).

Proof. (1) and (2) follow from the recursive definition of V(t) [5].
To prove (3), we remark that we may change W+Wr into P(W+ Wr)Pr

for any unimodular matrix of integers P and the entry
by N (resp. 2N) if i] (resp. i=]) when we define T(L) as in Proposition
1. So we can diagonalize W+W
presentation matrix for the first homology group of the double branched
cover of L.

Let F(a, x) be the Kauffman polynomial [7] and Q(x) the Q-polynomial
[1, 4]. Then from [1, 8, 9, 11] and Theorem 2 we have

Corollary.

2- (if L is proper)(1) T.(L)=
[0 (otherwise)

=F (exp (z/- 1/4),-- /-) (- 1))-,
where (L) is the number of components in L and L is proper if the link-
ing number of K and L--K is even for every component K in L.

(2) T(L)=Q(-- 1) (-- 1)*)---(--3) (-- 1))-1.
For the interpretation for V(/- 1) see [11] and for V (exp (z/- 1/3))

see [8, 10].
Finally we remark that the cyclotomic invariants are essentially in-

variants for quadra.tic forms. So we can define them for more general
situations; for example, links in homology spheres and higher dimensional
links. We also remark that we may take q to be any primitive 2N-th root
of 1, which is suggested by T. Kohno.
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