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1. Introduction. Let X be a Banach space, and let B(X) be the set
of all bounded linear operators from X into itself. Arendt [1] introduced
the notion of integrated semigroups and obtained the following generaliza-
tion of the Hille-Yosida theorem: A closed linear operator A is the gen-
erator of a once integrated semigroup {U(¢) ; ¢ >0} on X satisfying || U(t+ k)
—U@)||<Mhe*¢*™ for t, h>0 if and only if (a, ©)Cp(4) and ||QA—A)™||<
M/|(—a)™ for 2>a and m>1, where M >0 and a >0 are constants. More-
over, the part of A in D(A) is the generator of a (C,)-semigroup on D(A4).

Let C € B(X) be injective. In this paper we introduce the notion of
integrated C-semigroups and prove the following theorems.

Theorem 1. An operator A is the generator of an integrated C-semi-
group {U®); t>0} on X satisfying
.1 NUE+m)—U®I<Mhe*“*»  for t,h>0,
where M >0 and a >0 are constants, if and only if A satisfies the following
properties (A1)-(A8) and it is maximal with respect to (A1)—(A3):

(A1) A is a closed linear operator and A—A is injective for 2>a ;
(A2) D((A—A)"™DR(C) and |A—A)"C|<M|A—a)™ for A>a and m>1;
(A3) CzeD(A) and ACx=CAx for x ¢ D(A).

Theorem 2. If A satisfies the equivalent conditions of Theorem 1,
then the part of A in D(A) is the generator of a C,-semigroup {S,(t) ; >0} on
D(4) satisfying || S,z || < Me* ||z| for x e D(A) and t>0, where C,=C|zg;.

The above-mentioned Arendt’s results are the case of C=1I (the identity)
in Theorems 1 and 2. As direct consequences of Theorems 1 and 2 we have:

Corollary 1. If A satisfies (A1)-(A8) in Theorem 1 then C—AC is the
generator of an integrated C-semigroup {U(t); t >0} on X satisfying
UE+h)—U®) |<Mhe*¢*™ for t, h>0.

Corollary 2 ([2, Corollary 18.2]). Suppose R(C)=X. A is the gener-
ator of a C-semigroup {S(t); t>0} on X satisfying ||S@)|<Me** for t>0 if
and only if A is maximal with respect to (A2), (A3) in Theorem 1 and “(A1")
A is a closed linear operator with D(A)=X and 2-A is injective for A>a”.

2. Integrated C-semigroups. Let C e B(X) be injective. A family
{U@); t>0} in B(X) is called an integrated C-semigroup on X, if
2.1) U(-)x:[0, 0)—X is continuous for z ¢ X,

2.2) U@)x=0 for all t>0 implies =0,
(2.3) there exist K>0 and >0 such that || U(#)||< Ke* for ¢>0,
(2.4) U(0)=0 (the zero operator) and U(t)C=CU(t) for ¢>0,
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@.5) U(t)U(s)x:fm U0 Ca dr—f U)Cxdr  for xe X and t, s>0.
t 0

Let {U(®); t>0} be an integrated C-semigroup on X. For i1>w,=
max {0, lim,_., (log |U®)|)/t} we define L(2) ¢ B(X) by

L(z)x=f Ae~*U)x dt for z ¢ X.

Clearly L(A)C=CL(2) for 2>w0,, and a simple computation yields
L(p)C—L(C=Q— L) L(p) for 2, > w,.

It follows from this that L(y) is injective for x>w, and the following holds:
2.6) {xreX; Cxe RILA)}={x e X; Cx e R(L(w)} (=D(A)),

AL Ox=@—L(w'Cx  for i, p>w, and x € D(4).
Therefore the closed linear operator A defined by

Ax=0Q—LA)'C)x for x e D(A)={x ¢ X ; Cx e R(L(2))}

is independent of 2>w,. The operator A is called the generator of the
integrated C-semigroup {U(¢); t>>0}. The generator has the following
2.7 CxeD(A) and ACx=CAx for « e D(A),
2.8) Q—A)LQQ)x=Cx for x ¢ X and 2>,

’ LA)G—A)x=Cx for z e D(A) and 1> w,.
Example. Let Z be the generator of a C-semigroup {S(t); t>>0} on X
with ||S@)||< Me® for t>0, where M >0 and a. >0 are constants. (Werefer
to [2, 4] for C-semigroups.) Define U(t) e B(X) for ¢t>0 by

U(t)x:ﬁ S()zds  for zeX.

Then {U(t) ; t>>0} is an integrated C-semigroup on X whose generator is Z,
and |UG+R)—U®)||<Mhe*“+™ for t, h >0.

Lemma. Let A be the generator of an integrated C-semigroup {U();
t>0} on X. Then for t>0 we have

2.9 AU@®x=U@®)Ax and U)x= th—i—I: U(s)Ax ds for x e D(A),

2.10) I: Us)z ds e D(A) and U(t)w=tCx+A r UGs)zds  forzeX.

Moreover, if {U(t); t>0} satisfies (1.1) then A satisfies (A1)-(A3).
Proof. By (2.8), 2—A is injective and

(z—A)—lcxzzf‘” e *UMzdt  for 1>w, and & € X.
0

Set f(X, x)=2"'(A1—A)'Cx for x ¢ X and 1>w,. The Post-Widder inversion
formula [3, Theorem 6.3.5] implies
2.11) U@®z=lim,_.(—=D"™/mD@m/t)""'f™(@m/t,z) for x e X and ¢>0.
Letx € D(A). Then f(2, Ax)=Af(Q, x) by (2.7), which implies f™ (2, Ax)
=Af™(,x) for 2>w, and m>0. Combining this with (2.11) we see that
U)x e D(A) and AU@)x=U@)Ax for t>>0. Similarly as in the proof of
[1, Proposition 3.3], we obtain the latter half of (2.9) and (2.10).
Suppose that {U(?) ; >0} satisfies (1.1). Sincea>w, by |U®)||<Mte*,
A satisfies (A1), (A3) (=(.7)) and

@.12) (z_A)-’Cx=f°° e UMz dt  for » e X and 1>a.
0
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Moreover, by induction on m we obtain for x ¢ X, A>a and m >2
(A—A)"Cx=(C-'L(A))"Cx

=r~ : -r o3ttt (Ut - - -4, 8— Ul - - - +8,)0)dt, - - -dt,.
0 0

Let x e X, 2* e X* (the dual of X), 2>a and m>1. By (1.1), 2*(U@®)x) is
differentiable and |[(d/dt)x*(U(t)x)|<Me* ||x*| ||z| for a.e. t. Therefore
le*(UE+h)z—U@)2)|

zljtm (d/dS)x*(U(s)x) ds|<M IERINED Jw e+ g for ¢, h>0.
¢ 0

Combining this with (2.13) and (2.12) we obtain (A2). Q.E.D.

3. Proof of Theorems.

Proof of Theorem 1. (Necessity) Let A be the generator of an inte-
grated C-semigroup {U(¢) ; t >0} on X satisfying (1.1). A satisfies (A1)-(A3)
by Lemma. Suppose that U satisfies (A1)-(A3) with A replaced by U and
ADA. To show A=A, let x ¢ DQ) and set f(2,2)=2"'(21—A)"'Cz for ze X
and 1>, For 1>a, fQA,UAx)=2"'Q—A)"'CAx=U2"'A—-W)'Cx=AS(Q2, x)
which implies % f™(, )= f™@Q, z) for m>0. Combining this with (2.11)
we see that U®)x e D) and AU@)x=U@)UAx for t>0. Hence

Ca=@—A) f de- Utz dt = f " e U0 —Wa dt = L2 —Wa
0 0
for 1>w,, which implies x € D(A). Thus A=A.
(Sufficiency) For x e X and m>1,
R"Co= 3. Coi(pg—D""""R(@)'*'Cx  for p>2>a,
l 1

where R(1)=(1—A4)*, which implies (d/d)RA)"Cx= —mRA)"*'Cx for 1>a.
Now, by induction on m we obtain that for x ¢ X, 2>a and m>1,

3.1 @/dym(A—A)'Ce=m! (—=1)"QA—A)-™*Cx.

Hence by (A2), [[(d/d)"A—A)"'Cx||<m!M|z|/A—a)"*" for zweX, i>a
and m>0. By [1, Corollary 1.2] there exists a family {U(¢); t >0} in B(X)
such that U0)=0, |UE+h)—U@®)|<Mhe*“*™ for t, >0 and

3.2) (1—A)“Cx=jw ie"*U)x dt for x €e X and 1>a.
0

Clearly {U(?); t>0} satisfies (2.1)-(2.3). Since (A3) is equivalent to
(A3) (A—A)"'"Cx=C(1—A)'x for 2>a and x e D((A—A4)7Y),
it follows from (3.2) that

r re~*U)Cx dt=r e~ *CU@)x dt for x ¢ X and 1>a.

0 0

By the uniqueness theorem for Laplace transforms we see that U(t)C=
CU(@) for t>0, i.e., (2.4) holds. Since A1—A)"'Cx—(u—A)'Cr=(—DA—

A) ' (p—A)'Cx for xe X and 2, p>a, similarly as in the proof of [1,
Theorem 3.1] we see that (2.5) holds.

Let A be the generator of {U(¢); t>0}. To see AC/I, let x € D(4) and
put A—A)x=y, where A>a>w0,. By (A%) and (3.2) we see that

Ca= (2—A)‘10y=r 26Uty dt=LQy.
0

(2.13)
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Hence z € D(A) and Az=1z—L()-'Cx=Ax. Thismeans ACA. Hence we
obtain A=A, because A satisfies (A1)-(A3) with A replaced by A from
Lemma and A is maximal with respect to the properties (A1)-(A3). Q.E.D.
Proof of Theorem 2. As in the proof of [1, Corollary 4.2] we see that
U(-)x e C([0, o), X) and (d/dt)U(t)x € D(A) for z € D(A) and ¢t>0.
Now, for ¢>0, define S,(¥): D(A)—D(4) by S,()x=(d/dt)Ut)x for
x e D(A). Then {S,(t); t>>0} is a C,-semigroup on D(A) satisfying (3.3)-
(3.6), where C,=C|pw ;
(3.3) [Si@®xll<Me |||  for x e D(4),
3.4 S\ t+mx—S,A)x|<Mhe““*" || Ax|| for ¢ D(A) and t, h >0,

3.5) S(Hz=Ca+A, L S,(s)x ds for ¢ D(A) and £>0,

(3.6) (1—A,) r ¢S, (H)z dt=Cz for 2 ¢ D(A) and 1>a.
0
In fact, (3.3)-(8.5) follow from (1.1), (2.9) and (2.10). Differentiating
U(t)U(s)x=f” U@ Cy dr—r UG Cy dr
t 0

with respect to s and ¢, we get S,(£)S,(8)x=_S,(s+1)C,x for D(A) and ¢, s>0.
Thus {S,(t); t>>0} is a C,-semigroup on D(4). (3.6) follows from (2.8).

Finally, let 4, be the part of A in D(4) and let Z, be the generator of
the C,-semigroup {S,(t); >0} on D(4). Tosee A,=Z, letx e D(4,). Ax=
Az e D(A) and AU®)z=U@t)A,x imply S,(t)x € D(A,) and A, S,(H)z=S,{)A,x.
From this and (3.6) we see that for 1>a

clx=f°° e S, (H(A—A )z dt=2,A—ADw, Where &z:r ¢S,z dt
0 0

for ze D(A) and 21>a. From the definition of generator it follows that
Zax=0Q—'Cxr=Ax. Thus we get A,CZ,. Next, as in the proof of [4,
Theorem 2.1] we have Z,CC;'A,C,. Moreover C;'A,C,CcC-'AC=A, because
C-'AC satisfies (A1)-(A3) with A replaced by C-'AC and ACC-'AC by (A3).
This implies C;'A,C;CA,. Hence Z,CA,. Q.E.D.

Proof of Corollary 1. By the maximal principle there is an ADA such
that A is maximal with respect to (A1)-(A3). We see that AcC-'AC and
C-'AC satisfies (A1)-(A8). Therefore C-'AC=A. Q.E.D.

Corollary 2 follows from [2, Proposition 7], Example and Theorems 1, 2.

Remark. Let A satisfy (A1)-(A3). A is maximal with respect to the
properties (A1)-(A8) if and only if A=C-'AC.
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