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The functional equation for the Riemann zeta function (s) was dis-
covered by Euler [1] in 1749 in the form (1-s)--Fc(s)cos(zrs/2)(s) with
Fc(s)--2(2zr)-’F(s). Later, Riemann [2] found the symmetric functional
equation: FR(s)(s)=FR(1--s)(1-s) where FR(s)=zr-8/2F(s/2). These two
functional equations are equivalent since Fn(s)I’(s 4- 1) Fc(s) and
F(l+s)F(1--s)=(cos (s/2))-, but as is well-known the Riemann’s form
has been more suggestive to later developments of arithmetic zeta functions
containing the adelic view point, where l"(s)(s) is considered as the product
of local zeta functions.

The same is true for Selberg zeta functions. Let M be a compact
Riemann surface of genus g_>__2, and F--=(M) the fundamental group em-
bedded in PSL2 (R), so M--F\H for the upper half plane H. The zeta func-
tion Z(s) of F (or M) is defined by Selberg [3] as the product over all
primitive hyperbolic conjugacy classes of F. The functional equation of
Selberg was not symmetric corresponding to Euler. Later, Vignras [4]
as Riemann presented the symmetric functional equation Z (s)Z (s)-

F (s) ((2zr) I’(s)Z (1 s)Zyp (1--s) with the identity factor Z (s) c -F(s)-)- where F2(s) is the double gamma function of Barnes. Recently,
Voros [5] and Sarnak [6] give the determinant expression

Zi (s)Zhyp (s)-- det (A-- s(1-- s)) exp ((2g-- 2)(C-P s(1- s)))
where A is the Laplace operator acting on L2(M) and C- 1 /4- (1 / 2) log (2u)
-[- 2’(- 1). Letting s-+l, they reprove

Zyp (1)-- det’(A) exp ((2g-- 2)(C+ log (2u)))
which was previously shown by string physicists.

We study the case of non-co-compact F (non-compact M). The basic
case is F----PSL2 (Z), and hereafter we treat this case since the general fea-
ture appears explicitly here. The case of congruence subgroups is quite
similar and our method is directly applicable. According to Vignras [4]
we have the symmetric functional equation

Zyv(s)Zi(s)Z(s)Zw(s) Zhyv(1- s)Z(1-- s)Zl(1-- s)Z;(1-- s)
with Z(s)=Fc(s)/. Unfortunately Zo(s) and Zv(s) are ineompletely (or
erroneously) defined in [4]. In the remarkable paper [7], Fischer gives
correctly

Zell(s) F(s/ 2)-1/2F((s+ 1) / 2f/2F(s / 3)-v3F((s- 2) / 3)v3
and Zv(s) a bit implicitly; we refer to Venkov [8] for related calculations.
More precisely we have
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Theorem 1. Z:(s)--(F(2s)[(2s)F(s+l/2)2") -*.
Proof. It is sufficient to correct [4, p. 245]: we have

![ (-2ir) dr I ’ 1
u 3- 5 r+z=T-(-2z)+

and add 1/2z since ?(1/2)=--1. Q.E.D.
Theorem 2.
( 1 ) Zy(s)Z,(s)Z(s)Z(s)= det (A- s(1- s)) exp (a+ s(1- s)b)

for constants a and b, where is the Laplace operator of PSL(Z).
(2) Zy,(1)=det’(A)5(2)e2-/-/:F(1/3)v.
Proof. The finiteness of det(A-s(1-s)) is shown in Theorem 3

below. Let F(s)(resp. F(s)) be the left (resp. right) hand side. Then
we have

1 d 1 d. log F(s) (--s(1- s))-2s--1 ds 2s--1 ds =o

for i=1, 2 where 0=J02 " denote the eigenvalues o2 . The
case i=1 ollows from the trace ormula, and the case i=2 is simply
obtained from the definition

de (A-(1-)) exp -=0 0

I is remarkable tha he completed eta function of PSL(Z) is
eonsequenly (gammas)(2)-(). ore generally when the scattering
determinan p() (for the datum (F,
and a finite dimensional unitary representation 0 of F) is given by
(2-2)/(2) hen (, (F, 0)) is essentially given by L()- and
(, (F, 0))(1-, (F, 0))- coincides with p() u o elementary factors.

Theorem 3. ( 1 ) The eetrl eta Ietio (, A)=L i holo.-
morhie o C eeet o the
gouble oe at =(1/)- or =0, 1, 2,

() e-e-+ e-,logt+e-,o+eo+(e,o+e,l.ogt)t/t+O
n=l t t1/2 n=l

where c_=1/12 and c.=O for even n.
Proof. We show (2), then (1) ollows by the Mellin transformation.

We use the trace formula o Selberg [3] in the form o Hejhal [9, p. 510]
combined with the method of Delsarte [10]. (The case of a congruence
subgroup is similar by using the trace formula of Hejhal [9, Chap. 11]
and Huxley [11].) Taking h(r)=exp(-(1/4+r)t) in the trace formula
we have the decomposition =o e-t=H(t)+I(t)+ E(t)+ (P(t)+P(t)+P(t))
into hyperbolic, identity, elliptic, and parabolic components, where

P(t)=log 2e-
P(t)=2EA(q)lexp(-( t

q 2J +(lg q) ))
P(t) exp (1/
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where (z)=F’(z)/F(z) and q runs over all prime powers. It is easy to
see that H(t) and P(t) are rapidly decreasing (than any positive power
of t) as t-+0. In E(t) and P(t) we can expand the exponential con-
taining t and we have power series of t. For I(t) we use

exp (--(1/4+r)t)sech (:r)drI(t)=-
and expand it in t. Lastly we look at the most crucial P(t). By using
Mellin transformation, it is sufficient to show that for positive constants
a and b the function

Q(s)=:(+r) Re q(a+ ibr)dr

is holomorphic on C except .for double poles at s=(1/2)-k or k=0, 1, 2,
Splitting the integral at r=1/2 we see

Q(s)=4- (l+ t)-t-/ Re (a+i(b/-/2))dt

4t-I .10(1" X)-X-8/2 Re ,(a+ i(b/2v/--))dx,+
where the former is holomorphic on C. The Stirling-Binet formula
(Whittaker-Watson [12, p. 252]) shows that

Re @(a+ ibr)= log r+ log b + 12br--1 +... +c +Rr(r)

with ]R(r)lGMr/r+ in r1/2, where Cn are expressed via Bernoulli
numbers. Since the integral of the remainder term is holomorphic in

Re(s)--N, it is sufficient to notice that

10 0( )(l+x)-x-m (log x)x"dx=- -s (-1) m!
k (s+n+k--1/2)

for m,n=O, 1,2, ..., and l(s)llF(s)-lk()- as k--c. Q.E.D.

We notice that (1) is extended to :0(--s(1-s)) by applying the
Mellin transformation to (2) multiplied by et(’-); the holomorphy at
z=0 implies the finiteness .o det (A-s(1-s)) needed in Theorem 2. We
remark that Theorem 3 has an independent interest from the view point
of Spectral geometry, since we do not have much knowledge concerning
the spectral zeta function and the associated asymptotic expansion in the
case of non-compact Riemannian spaces such as PSL. (Z)\H in general.
The appearance of double poles in (1) and the appearance of log t in (2)
are characteristic in comparison with the compact case. Similar results
are obtained in some higher rank non-compact locally symmetric spaces
also since the crucial point is the study of the scattering determinant.
As noted in [17], Theorems I and 2 indicate the symbiosis-evolutional
interpretation of the parabolic components as "chloroplasts" see [13]-[17].
We supplement [17] by noting that we have similarly

s(s- 1)F(s)5(s) C. det (A s(1 s))
with a constant C. Here F is a finite extension field of Q, 5(s) is the
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Dedekind zeta function, F(s)=D(F)nF(s)rFc(s) with the absolute
value D(F) of the discriminant, and z, is the infinite diagonal matrix
diag(l(F), 2(F),...) with 2(F)--1/4+r(F)2, where O_<__r(F)=r2(F)=...
run over non-negative numbers satisfying (1/2+ir(F))=O assuming
the Riemann hypothesis for (s). It is sufficient to apply (2s--1)-’dlog
to the both sides by noting that the poles of the spectral zeta function
(s, )=__(F) are double poles at s=(1/2)--k for k=0, 1, 2,...
by the above property of Q(s) since the explicit ormul or (s) is
exactly similar to the parabolic term treated bove. We notice that the
"maximal pole" is also double which is distinct rom the case of the
spectral zeta function of a finite dimensional Riemannian space of finite
volume where the maximal pole would be (at most)simple as in Theorem
3. In nfinite dimensional or infinite volume cases we might have the
maximal pole o multiple order. We refer to Tamura [18] or the log(c)
volume case; or example, let M=(x, y) e R; Oy<(a/x+l} or a posi-
tive constant a, then the spectr of the Laplace operator =--(/3x
+/3y) are all discrete (point spectra.) and

N(x, )={]" eigenvalues O<,<x}.--a--x log x
4

as x--co, which suggests that (s, )=y:- has the double (maximal)
pole at s=l.
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