59. Classification of Normal Congruence Subgroups of $G(\sqrt{q})$. II

By Toshikazu TAKAGI College of Arts and Sciences, Showa University (Communicated by Shokichi IYANAGA, M. J. A., June 14, 1988)

This is continued from [0].

4. Here we treat the case of general level L. Any L can be written uniquely as $L = \prod L_p (L_p \in L)$, where p runs over all primes and L_p is a power of p. Then we have the canonical isomorphism $H_q(L) \cong \prod_{p \mid L} H_q(L_p)$, where $p \mid L$ means $L_p \neq 1$. We regard $H_q(L_p)$ as a subgroup of $H_q(L)$ by this isomorphism. A set $\{N_1, \dots, N_k\}$ of normal σ -subgroups of level L of $H_q(L)$ is called a *Z*-complete set of $H_q(L)$ if any normal σ -subgroup N of level L of $H_q(L)$ can be expressed as $N = N_i Z$ $(1 \leq i \leq k)$ by a σ -subgroup Zof $Z_q(L)$, where $Z_q(L)$ denotes the center of $H_q(L)$. Let $\mathfrak{S} = \{N_1, \dots, N_k\}$ be a set of normal subgroups of $H_q(L)$ and K be a normal subgroup of $H_q(L)$. Then $\mathfrak{S}K$ denotes the set $\{N_1K, \dots, N_kK\}$.

In order to define some normal σ -subgroups of level L of $H_q(L)$, we shall use the notation [F, n; z] defined as follows. Let G_1 and G_2 be any two groups, and set $G = G_1 \times G_2$. Let (F, n) be a pair of a normal subgroup F of G_1 and an element n of G_1 . Let z be an element of the center of G_2 . Then we set $[F, n; z] = F \times \langle z^2 \rangle \cup nF \times z \langle z^2 \rangle$.

For any integer $k \in N$, put $L_k^* = \prod_{p \nmid k} L_p$. Suppose now that $q \neq 2$. When $L_2^* \neq 1$, the subset Z_q^* of $Z_q(L_2^*)$ is defined by $Z_q^* = \{z \in Z_q(q^{1/2}) \prod_{p \mid L_{qq}^*} \{\pm I_p\} \mid \text{ord}(z) = \text{even}\}$ (if $L_q = q^{1/2}$) or $\{z \in \prod_{p \mid L_q^*} \{\pm I_p\} \mid z \neq I\}$ (if $L_q \neq q^{1/2}$). Let us define the set $\mathfrak{S}_q(L)$ of subgroups of $H_q(L)$ by $\mathfrak{S}_q(L) = \{1\}$ (if $L_2 = 1$), $\{1, Q_1, [Q_1, B; z] \ (z \in Z_q^*)\}$ (if $L_2 = 2$), $\{1, E_2, Q_2\}$ (if $L_2 = 2^2$), $\{1, E_3\}$ (if $L_2 = 2^3$), $\{1, E_m, G_m^+, G_m^-, [F_m^+, X; z] \ (z \in Z_q^*)\}$, $[F_m^+, -X; z] \ (z \in Z_q^*)\}$ ($X = \phi^{-1}(B_{m-1}C_{m-1} \cdot D_{m-4})$) (if $L_2 = 2^m, m \geq 4$), where the groups of type [F, n; z] are defined with respect to the decomposition $H_q(L) = H_q(2^m) \times H_q(L_2^*)$.

Theorem 4. Assume that $q \neq 2$. Let L be any element of L. Let $\mathfrak{S}_q(L)$ be the set defined above. Then a Z-complete set of $H_q(L)$ is given by the union of $\mathfrak{S}_q(L)$, $\mathfrak{S}_q(L)M$, $\mathfrak{S}_5(L)R_k^{(5)}$, $\mathfrak{S}_5(L)R_k^{(5)}M$, $\mathfrak{S}_5(L)S_k^{(5)}$, $\mathfrak{S}_5(L)S_k^{(5)}M$, where the sets multiplied by $R_k^{(5)}$ or $S_k^{(5)}$ appear only when q=5 and $L_5=5^k$ $(k \in N)$, and the sets multiplied by M appear only when $q \neq 3$ and $L_3=3$.

Suppose now that q=2. When $L_2^* \neq 1$, set $Z_2^* = \{z \in \prod_{p \mid L_2^*} \{\pm I_p\} \mid z \neq I\}$. Let us define the set $\mathfrak{S}_2(L)$ of subgroups of $H_2(L)$ by $\mathfrak{S}_2(L) = \{1\}$ (if $L_2 = 2^{m-1/2}$ $(m \geq 2), 1, 2), \{1, R_2, S_2, [\pm E_2^+, BC; z], [\pm E_2^+, BC^{-1}; z]\}$ (if $L_2 = 2^2), \{1, L_3^+, L_3^-, M_3^+, M_3^-, P_3, Q_3, S_3^+, S_3^-, [H_3^+, B_1C_1; z], [H_3^+, -B_1C_1; z], [H_3^+, B_1C_1^{-1}; z], [H_3^+, -B_1C_1^{-1}; z], [\pm L_3^+, BC^{-1}; z], [\pm L_3^+, BC^{-1}D; z], [E_2^{3+}, BC; z], [E_3^{3+}, -BC; z]\}$ (if $L_2 = 2^3$), $\{1, L_m^+, L_m^-, M_m^+, M_m^-, N_m^+, N_m^-, O_m^+, O_m^-, [H_m^+, L; z], [H_m^+, M_m^-, M_m^+, M_m^-, N_m^+, N_m^-, O_m^-, [H_m^+, L; z], [H_m^+, M_m^-, M_m^-,$ $-L; z], [H_m^+, M; z], [H_m^+, -M; z], [J_m^{++}, N; z], [J_m^{++}, -N; z], [J_m^{++}, O; z], [J_m^{++}, -O; z]$ $(L=B_{m-2}C_{m-2}^{-1}, M=B_{m-2}C_{m-2}, N=B_{m-2}C_{m-2}D_{m-4}, O=B_{m-2}C_{m-2}^{-1}D_{m-4})$ $(\text{if } L_2=2^m \ (m \ge 4)), \text{ where } z \text{ runs over all elements of } Z_2^*. \text{ The groups of type } [F, n; z] \text{ are defined with respect to the decomposition } H_2(L)=H_2(L_2) \times H_2(L_2^*).$

Theorem 5. Assume that q=2. Let L be any element of L. When $L_2=2^{1/2}$, there are no subgroups of level L of $H_2(L)$. When $L_2\neq 2^{1/2}$, let $\mathfrak{S}_2(L)$ be the set defined above. Then a Z-complete set of $H_2(L)$ is $\mathfrak{S}_2(L)$ or $\mathfrak{S}_2(L) \cup \mathfrak{S}_2(L)M$ according as $L_3\neq 3$ or $L_3=3$ respectively.

5. Now we consider odd groups. Let G be an odd normal congruence subgroup of level L of Γ . Then $G=N\cup(SX)N$, where $N=G\cap\Gamma^e$, S=(0, -1; 1, 0) and $X\in\Gamma^e$.

Proposition. Let N and X be an even normal subgroup of Γ and an even element respectively. Then the set $G=N \cup (SX)N$ is an odd normal subgroup of Γ if and only if the following two conditions are satisfied:

(5.1) $X^{-1}PX \equiv P^{\sigma} \pmod{N} \quad for \ all \ P \in \Gamma^{e},$ (5.2) $X^{2} \equiv -I \pmod{N}.$

By this proposition, the classification of all G reduces to the classification of all pairs (N, X) satisfying (5.1) and (5.2) with N of level L. Further, by the homomorphism $\Gamma^e \to H_q(L)$, the problem reduces to the classification of all pairs (N, X), where N is a normal σ -subgroup of level L of $H_q(L)$ and X is an element of $H_q(L)$, satisfying the following (5.3) and (5.4):

(5.3) $X^{-1}PX \equiv P^{\sigma} \pmod{N}$ for all $P \in H_q(L)$,

 $(5.4) X^2 \equiv -I \pmod{N}.$

We call such a pair (N, X) an odd pair of level L. Two odd pairs (N_1, X_1) and (N_2, X_2) are called *equivalent* if and only if $N_1 = N_2$ and $X_1 \equiv X_2$ (mod N_1). Then all G of level L corresponds one to one to all equivalence classes of odd pairs of level L of $H_q(L)$. First we treat the case that L is a power of a prime.

Theorem 6. When $L=q^s$ $(s=m \text{ or } m-1/2 \ (m \in N))$, all equivalence classes $(N, X \pmod{N})$ of odd pairs of level L of $H_q(L)$ are the following:

- (1) $L=q^{1/2}, q\equiv 1 \pmod{4}: (T^{(q)}_{(2)}, I), (T^{(q)}_{(2)}, A).$
- (2) $L=3: (\pm S_1^{(3)}, I).$
- (3) $L=5: (\pm R_1^{(5)}, A), (\pm S_1^{(5)}, I).$
- (4) L=2: (E₁, I), (E₁, B).
- (5) $L=2^2$: (S_2, I) , (S_2, B_1) .
- $(6) \quad L=2^3: (S_3^+, \pm B_1).$

When $L=p^m$ with p a prime $\neq q$, in particular in the case of p=2, there exist many equivalence classes of odd pairs. So we introduce a terminology "primitive". Let $N_1 \supseteq N_2$ be two normal σ -subgroups of level Land let (N_2, X) be an odd pair. Then (N_1, X) is also an odd pair and we call it an extension of (N_2, X) . An equivalence class of odd pairs is called *primitive* if it does not contain any odd pair which is an extension of other odd pairs. Now we define some elements of $H_q(p^m)$: (1) If $p \neq 2$ and (q/p) = 1, where (q/p) denotes the Legendre symbol, we set $X_{(p)m}^{(q)} = (0, b_m \sqrt{\overline{q}}; -b_m \sqrt{\overline{q}}, 0)$ where b_m is an integer such that $b_m^2 q \equiv 1 \pmod{p^m}$ and $b_m r \equiv 1 \pmod{p}$ with $1 \leq r < p/2$ $(r \in \mathbb{Z})$.

(2) If p=2 and $q\equiv 1 \pmod{8}$, we set $X_{(2)m}^{(q)}=(0, b_m\sqrt{\overline{q}}; -b_m\sqrt{\overline{q}}, 0)$ where b_m is an integer such that $b_m^2q\equiv 1 \pmod{2^{m+1}}$ and $b_m\equiv 1 \pmod{4}$.

(3) If p=2, we set $Y_m^{(q)} = (0, \sqrt{\overline{q}}; c_m \sqrt{\overline{q}}, 0)$ where c_m is an integer such that $c_m q \equiv -1 \pmod{2^m}$.

Theorem 7. When $L = p^m$ $(m \in N)$ with p a prime $\neq q$, all primitive equivalence classes $(N, X \pmod{N})$ of odd pairs of level L of $H_q(L)$ are the following:

- (1) $L = p^m (p \neq 2), (q/p) = 1: (1, \pm X^{(q)}_{(p)m}).$
- (2) $L=2:(1, Y_1^{(q)}), (Q_1^{(q)}, I).$
- (3-1) $L=2^2, q\equiv 1 \pmod{4}: (1, \pm Y_2^{(q)}).$
- (3-2) $L=2^2$, $q\equiv 3 \pmod{4}: (\pm I, Y_2^{(q)}B_1C_1).$
- (4-1) $L=2^3$, $q\equiv 1 \pmod{8}: (1, \pm X^{(q)}_{(2)3}), (1, \pm X^{(q)}_{(2)3}D).$
- (4-2) $L=2^3$, $q\equiv 3 \pmod{8}: (\pm E_3^{(q)}, Y_3^{(q)}B_1C_1), (\pm E_3^{(q)}, Y_3^{(q)}B_1C_1D).$
- (4-3) $L=2^3$, $q\equiv 5 \pmod{8}$: $(F_3^{(q)}, \pm Y_3^{(q)}B_2C_2)$.
- (4-4) $L=2^3$, $q\equiv 7 \pmod{8} : (K_3^{(q)}, \pm Y_3^{(q)}B_1C_1).$
- $\begin{array}{ll} (5) \quad L=2^m \ (m \geq 4), \ q \equiv 1 \ (\text{mod } 8) \colon (1, \ \pm X^{(q)}_{(2)m}), \ (1, \ \pm X^{(q)}_{(2)m}D_{m-3}), \\ (F^{(q)+}_{m}, \ \pm X^{(q)}_{(2)m}B_{m-1}C_{m-1}D_{m-4}). \end{array}$

Second we consider the case of general level L. Then as in section 4, we have $L = \prod L_p$ and $H_q(L) = \prod H_q(L_p)$. For a normal σ -subgroup N of $H_q(L)$, the p-foot F_p of N is defined by $F_p = N \cap H_q(L_p)$. For an element X of $H_q(L)$, the p-component of X is denoted by X_p .

Theorem 8. Let $L(\neq 1)$ be any element of L. Let N, X, F_p and X_p be as above. Then the pair (N, X) is an odd pair of $H_q(L)$ of level L if and only if for each prime factor $p \mid L$ the pair (F_p, X_p) is an odd pair of $H_q(L_p)$ of level L_p .

Reference

[0] T. Takagi: Classification of normal congruence Subgroups of $G(\sqrt{q})$. I. Proc. Japan Acad., 64A, 167–169 (1988).