59. Classification of Normal Congruence Subgroups of $\boldsymbol{G}(\sqrt{q})$. II

By Toshikazu Takagi
College of Arts and Sciences, Showa University
(Communicated by Shokichi Iyanaga, m. J. A., June 14, 1988)

This is continued from [0].
4. Here we treat the case of general level L. Any L can be written uniquely as $L=\prod L_{p}\left(L_{p} \in L\right)$, where p runs over all primes and L_{p} is a power of p. Then we have the canonical isomorphism $H_{q}(L) \cong \prod_{p \mid L} H_{q}\left(L_{p}\right)$, where $p \mid L$ means $L_{p} \neq 1$. We regard $H_{q}\left(L_{p}\right)$ as a subgroup of $H_{q}(L)$ by this isomorphism. A set $\left\{N_{1}, \cdots, N_{k}\right\}$ of normal σ-subgroups of level L of $H_{q}(L)$ is called a Z-complete set of $H_{q}(L)$ if any normal σ-subgroup N of level L of $H_{q}(L)$ can be expressed as $N=N_{i} Z(1 \leqq i \leqq k)$ by a σ-subgroup Z of $Z_{q}(L)$, where $Z_{q}(L)$ denotes the center of $H_{q}(L)$. Let $\mathbb{S}=\left\{N_{1}, \cdots, N_{k}\right\}$ be a set of normal subgroups of $H_{q}(L)$ and K be a normal subgroup of $H_{q}(L)$. Then © K denotes the set $\left\{N_{1} K, \cdots, N_{k} K\right\}$.

In order to define some normal σ-subgroups of level L of $H_{q}(L)$, we shall use the notation $[F, n ; z]$ defined as follows. Let G_{1} and G_{2} be any two groups, and set $G=G_{1} \times G_{2}$. Let (F, n) be a pair of a normal subgroup F of G_{1} and an element n of G_{1}. Let z be an element of the center of G_{2}. Then we set $[F, n ; z]=F \times\left\langle z^{2}\right\rangle \cup n F \times z\left\langle z^{2}\right\rangle$.

For any integer $k \in N$, put $L_{k}^{*}=\prod_{p \nmid k} L_{p}$. Suppose now that $q \neq 2$. When $L_{2}^{*} \neq 1$, the subset Z_{q}^{*} of $Z_{q}\left(L_{2}^{*}\right)$ is defined by $Z_{q}^{*}=\left\{z \in Z_{q}\left(q^{1 / 2}\right) \prod_{p \mid L_{2 q}^{*}}\right.$ $\left\{ \pm I_{p}\right\} \mid \operatorname{ord}(z)=$ even $\}$ (if $L_{q}=q^{1 / 2}$) or $\left\{z \in \prod_{p \mid L_{2}^{*}}\left\{ \pm I_{p}\right\} \mid z \neq I\right\}$ (if $L_{q} \neq q^{1 / 2}$). Let us define the set $\mathbb{S}_{q}(L)$ of subgroups of $H_{q}(L)$ by $\mathbb{S}_{q}(L)=\{1\}$ (if $L_{2}=1$), $\left\{1, Q_{1},\left[Q_{1}, B ; z\right]\left(z \in Z_{q}^{*}\right)\right\}$ (if $L_{2}=2$), $\left\{1, E_{2}, Q_{2}\right\}$ (if $L_{2}=2^{2}$), $\left\{1, E_{3}\right\}$ (if $L_{2}=2^{3}$), $\left\{1, E_{m}, G_{m}^{+}, G_{m}^{-},\left[F_{m}^{+}, X ; z\right]\left(z \in Z_{q}^{*}\right),\left[F_{m}^{+},-X ; z\right]\left(z \in Z_{q}^{*}\right)\right\}\left(X=\phi^{-1}\left(B_{m-1} C_{m-1}\right.\right.$. $\left.D_{m-4}\right)$) (if $L_{2}=2^{m}, m \geqq 4$), where the groups of type [F, n; z] are defined with respect to the decomposition $H_{q}(L)=H_{q}\left(2^{m}\right) \times H_{q}\left(L_{2}^{*}\right)$.

Theorem 4. Assume that $q \neq 2$. Let L be any element of L. Let $\mathfrak{S}_{q}(L)$ be the set defined above. Then a Z-complete set of $H_{q}(L)$ is given by the union of $\Im_{q}(L), \Im_{q}(L) M, \widetilde{S}_{5}(L) R_{k}^{(5)}, \Im_{5}(L) R_{k}^{(5)} M, \widetilde{S}_{5}(L) S_{k}^{(5)}, \Im_{5}(L) S_{k}^{(5)} M$, where the sets multiplied by $R_{k}^{(5)}$ or $S_{k}^{(5)}$ appear only when $q=5$ and $L_{5}=5^{k}$ ($k \in N$), and the sets multiplied by M appear only when $q \neq 3$ and $L_{3}=3$.

Suppose now that $q=2$. When $L_{2}^{*} \neq 1$, set $Z_{2}^{*}=\left\{z \in \prod_{p \mid L_{2}^{*}}\left\{ \pm I_{p}\right\} \mid z \neq I\right\}$. Let us define the set $\Im_{2}(L)$ of subgroups of $H_{2}(L)$ by $\Im_{2}(L)=\{1\}$ (if $L_{2}=2^{m-1 / 2}$ ($m \geqq 2$), 1, 2), $\left\{1, R_{2}, S_{2},\left[\pm E_{2}^{+}, B C ; z\right],\left[\pm E_{2}^{+}, B C^{-1} ; z\right]\right\}$ (if $L_{2}=2^{2}$), $\left\{1, L_{3}^{+}\right.$, $L_{3}^{-}, M_{3}^{+}, M_{3}^{-}, P_{3}, Q_{3}, S_{3}^{+}, S_{3}^{-},\left[H_{3}^{+}, B_{1} C_{1} ; z\right],\left[H_{3}^{+},-B_{1} C_{1} ; z\right],\left[H_{3}^{+}, B_{1} C_{1}^{-1} ; z\right]$, $\left[H_{3}^{+},-B_{1} C_{1}^{-1} ; z\right],\left[\pm \mathrm{L}_{3}^{+}, B C^{-1} ; z\right],\left[\pm L_{3}^{+}, B C^{-1} D ; z\right],\left[E_{2}^{3+}, B C ; z\right],\left[E_{2}^{3+}\right.$, $-B C ; z]\}$ (if $L_{2}=2^{3}$), $\left\{1, L_{m}^{+}, L_{m}^{-}, M_{m}^{+}, M_{m}^{-}, N_{m}^{+}, N_{m}^{-}, O_{m}^{+}, O_{m}^{-},\left[H_{m}^{+}, L ; z\right],\left[H_{m}^{+}\right.\right.$,
$-L ; z],\left[H_{m}^{+}, M ; z\right],\left[H_{m}^{+},-M ; z\right],\left[J_{m}^{++}, N ; z\right],\left[J_{m}^{++},-N ; z\right],\left[J_{m}^{++}, O ; z\right],\left[J_{m}^{++}\right.$, $-O ; z]\}\left(L=B_{m-2} C_{m-2}^{-1}, M=B_{m-2} C_{m-2}, N=B_{m-2} C_{m-2} D_{m-4}, \quad O=B_{m-2} C_{m-2}^{-1} D_{m-4}\right)$ (if $L_{2}=2^{m}(m \geqq 4)$), where z runs over all elements of Z_{2}^{*}. The groups of type [$F, n ; z$] are defined with respect to the decomposition $H_{2}(L)=H_{2}\left(L_{2}\right)$ $\times H_{2}\left(L_{2}^{*}\right)$.

Theorem 5. Assume that $q=2$. Let L be any element of L. When $L_{2}=2^{1 / 2}$, there are no subgroups of level L of $H_{2}(L)$. When $L_{2} \neq 2^{1 / 2}$, let $\mathbb{S}_{2}(L)$ be the set defined above. Then a Z-complete set of $H_{2}(L)$ is $\Im_{2}(L)$ or $\Im_{2}(L) \cup \Im_{2}(L) M$ according as $L_{3} \neq 3$ or $L_{3}=3$ respectively.
5. Now we consider odd groups. Let G be an odd normal congruence subgroup of level L of Γ. Then $G=N \cup(S X) N$, where $N=G \cap \Gamma^{e}, S=(0$, $-1 ; 1,0)$ and $X \in \Gamma^{e}$.

Proposition. Let N and X be an even normal subgroup of Γ and an even element respectively. Then the set $G=N \cup(S X) N$ is an odd normal subgroup of Γ if and only if the following two conditions are satisfied:

$$
\begin{align*}
X^{-1} P X & \equiv P^{\sigma} \quad(\bmod N) \quad \text { for all } P \in \Gamma^{e}, \tag{5.1}\\
X^{2} & \equiv-I \quad(\bmod N) . \tag{5.2}
\end{align*}
$$

By this proposition, the classification of all G reduces to the classification of all pairs (N, X) satisfying(5.1) and (5.2) with N of level L. Further, by the homomorphism $\Gamma^{e} \rightarrow H_{q}(L)$, the problem reduces to the classification of all pairs (N, X), where N is a normal σ-subgroup of level L of $H_{q}(L)$ and X is an element of $H_{q}(L)$, satisfying the following (5.3) and (5.4):

$$
\begin{align*}
X^{-1} P X & \equiv P^{\sigma} \quad(\bmod N) \quad \text { for all } P \in H_{q}(L), \tag{5.3}\\
X^{2} & \equiv-I(\bmod N) . \tag{5.4}
\end{align*}
$$

We call such a pair (N, X) an odd pair of level L. Two odd pairs (N_{1}, X_{1}) and $\left(N_{2}, X_{2}\right)$ are called equivalent if and only if $N_{1}=N_{2}$ and $X_{1} \equiv X_{2}(\bmod$ N_{1}). Then all G of level L corresponds one to one to all equivalence classes of odd pairs of level L of $H_{q}(L)$. First we treat the case that L is a power of a prime.

Theorem 6. When $L=q^{s}(s=m$ or $m-1 / 2(m \in N)$), all equivalence classes $(N, X(\bmod N))$ of odd pairs of level L of $H_{q}(L)$ are the following:
(1) $L=q^{1 / 2}, q \equiv 1(\bmod 4):\left(T_{(2)}^{(q)}, I\right)$, $\left(T_{(2)}^{(q)}, A\right)$.
(2) $L=3:\left(\pm S_{1}^{(3)}, I\right)$.
(3) $L=5:\left(\pm R_{1}^{(5)}, A\right),\left(\pm S_{1}^{(5)}, I\right)$.
(4) $L=2:\left(E_{1}, I\right),\left(E_{1}, B\right)$.
(5) $L=2^{2}:\left(S_{2}, I\right),\left(S_{2}, B_{1}\right)$.
(6) $L=2^{3}:\left(S_{3}^{+}, \pm B_{1}\right)$.

When $L=p^{m}$ with p a prime $\neq q$, in particular in the case of $p=2$, there exist many equivalence classes of odd pairs. So we introduce a terminology "primitive". Let $N_{1} \supseteq N_{2}$ be two normal σ-subgroups of level L and let $\left(N_{2}, X\right)$ be an odd pair. Then $\left(N_{1}, X\right)$ is also an odd pair and we call it an extension of $\left(N_{2}, X\right)$. An equivalence class of odd pairs is called primitive if it does not contain any odd pair which is an extension of other odd pairs. Now we define some elements of $H_{q}\left(p^{m}\right)$:
(1) If $p \neq 2$ and $(q / p)=1$, where (q / p) denotes the Legendre symbol, we set $X_{(p) m}^{(q)}=\left(0, b_{m} \sqrt{\bar{q}} ;-b_{m} \sqrt{\bar{q}}, 0\right)$ where b_{m} is an integer such that $b_{m}^{2} q \equiv 1$ $\left(\bmod p^{m}\right)$ and $b_{m} r \equiv 1(\bmod p)$ with $1 \leqq r<p / 2(r \in Z)$.
(2) If $p=2$ and $q \equiv 1(\bmod 8)$, we set $X_{(2) m}^{(q)}=\left(0, b_{m} \sqrt{\bar{q}} ;-b_{m} \sqrt{\bar{q}}, 0\right)$ where b_{m} is an integer such that $b_{m}^{2} q \equiv 1\left(\bmod 2^{m+1}\right)$ and $b_{m} \equiv 1(\bmod 4)$.
(3) If $p=2$, we set $Y_{m}^{(q)}=\left(0, \sqrt{\bar{q}} ; c_{m} \sqrt{\bar{q}}, 0\right)$ where c_{m} is an integer such that $c_{m} q \equiv-1\left(\bmod 2^{m}\right)$.

Theorem 7. When $L=p^{m}(m \in N)$ with p a prime $\neq q$, all primitive equivalence classes $(N, X(\bmod N))$ of odd pairs of level L of $H_{q}(L)$ are the following:
(1) $L=p^{m}(p \neq 2),(q / p)=1:\left(1, \pm X_{(p))_{m}}^{(q)}\right)$.
(2) $L=2:\left(1, Y_{1}^{(q)}\right),\left(Q_{1}^{(q)}, I\right)$.
(3-1) $\quad L=2^{2}, q \equiv 1(\bmod 4):\left(1, \pm Y_{2}^{(q)}\right)$.
(3-2) $L=2^{2}, q \equiv 3(\bmod 4):\left(\pm I, Y_{2}^{(q)} B_{1} C_{1}\right)$.
(4-1) $L=2^{3}, q \equiv 1(\bmod 8):\left(1, \pm X_{(2) 3}^{(q)}\right),\left(1, \pm X_{(2) 3}^{(q)} D\right)$.
(4-2) $L=2^{3}, q \equiv 3(\bmod 8):\left(\pm E_{3}^{(q)}, Y_{3}^{(q)} B_{1} C_{1}\right),\left(\pm E_{3}^{(q)}, Y_{3}^{(q)} B_{1} C_{1} D\right)$.
(4-3) $L=2^{3}, q \equiv 5(\bmod 8):\left(F_{3}^{(q)}, \pm Y_{3}^{(q)} B_{2} C_{2}\right)$.
(4-4) $L=2^{3}, q \equiv 7(\bmod 8):\left(K_{3}^{(q)}, \pm Y_{3}^{(q)} B_{1} C_{1}\right)$.
(5) $L=2^{m}(m \geqq 4), q \equiv 1(\bmod 8):\left(1, \pm X_{(2) m}^{(q)}\right)$, $\left(1, \pm X_{(2) m}^{(q)} D_{m-3}\right)$, $\left(F_{m}^{(q)+}, \pm X_{(2) m}^{(q)} B_{m-1} C_{m-1} D_{m-4}\right)$.
Second we consider the case of general level L. Then as in section 4, we have $L=\Pi L_{p}$ and $H_{q}(L)=\Pi H_{q}\left(L_{p}\right)$. For a normal σ-subgroup N of $H_{q}(L)$, the p-foot F_{p} of N is defined by $F_{p}=N \cap H_{q}\left(L_{p}\right)$. For an element X of $H_{q}(L)$, the p-component of X is denoted by X_{p}.

Theorem 8. Let $L(\neq 1)$ be any element of L. Let N, X, F_{p} and X_{p} be as above. Then the pair (N, X) is an odd pair of $H_{q}(L)$ of level L if and only if for each prime factor $p \mid L$ the pair $\left(F_{p}, X_{p}\right)$ is an odd pair of $H_{q}\left(L_{p}\right)$ of level L_{p}.

Reference

[0] T. Takagi: Classification of normal congruence Subgroups of $G(\sqrt{q})$. I. Proc. Japan Acad., 64A, 167-169 (1988).

