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An Elementary Proof of a Certain Transformation
for an n’Balanced Hypergeometric Series*

By H. M. SRIVASTAVA*) and Slobodan Lj. DAMJANOVI**)

(Communicated by K6saku YOSIDA, M. J.A., June 14, 1988)

A rather elementary proof (based only upon the familiar Heine trans-
formation for ), is presented for an interesting generalization of a theorem
asserting the symmetry in n and N of a function f(n, N) which is defined
in terms of an n-balanced basic (or q-) hypergeometric ,) series by Equa-
tion (5) below.

For real or complex q, Iql<l, let
( 1 ) (2 q)-- (2 q) / (2q q)
for arbitrary 2 and/, where

( 2 ) (2; q)= 1-[ (1--2qJ).
j=O

The generalized basic (or q-) hypergeometric series defined by

[’’’"8; ] o(O;q)...cr;q) z
(3) +1 q,z =__ (1;i" "(; )- (q;q)L, ,;
is said to be n-balanced if it terminates [that is, if at least one of the
numerator parameters 0, ", is of the form q- (N=O, 1, 2,...)], if
z--q, and if (cf. Srivastava [2, p. 108])
( 4 ) 1"" "--qn+lao’"a (n--O, 1, 2, ...),
it being understood, as usual, that no zeros appear in the denominator of
(3). (Thus, for the sake of simplicity, a zero-balanced q-hypergeometric
series is just called balanced; see also Askey and Wilson [1, p. 6].) We
now recall a transformation formula or an n-balanced ). series, which is
contained in the following

Theorem (Srivastava [4, p. 109]). Let n and N be arbitrary nonnega-
tire integers. Then f(n, N) defined in terms of an n-balanced 32 series by

(c q)(c/ab q)
3q2 q, q( 5 ) f(n, N)--

(c/a; q)(c/b q)
q-/cq, ab c
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is a symmetric function of n and N.
Two independent proofs of the theorem were given by Srivastava [4].

One of these proofs was based upon the following q-series identity due to
Srivastava and Jain [5, p. 229, Equation (6.1)]

(tz) z ztfn(2/ q)( 6 ) ,,=,0 9+(2; q)t(/, q) ( /-) (q q) n=0 (q; q)n

where {tgn}=0 is a bounded sequence of complex numbers and the parameters
2 and/ are essentially arbitrary, and upon Jackson’s sum for a balanced
q series"

Ia’b’q-Nil (c/a;q)N(C/b;q)N (N=0 1,2, "’’)( 7 q2 q’ q
(C; q)N(c/ab q)N

c, abql-U/c
which provides a q-extension of the well-known Pfaff-Saalschfitz theorem.
The other proof of the theorem made use of Sears’ transformation (cf. [3,
p. 167, Equation (8.3)]; see also [1, p. 6, Equation (1.28)])

(8)

([/o q)v(f[/fir q)v
(/; q)N(2Z/Ot" q)v

which holds true when each 4b3 series is balanced, that is, when N is a non-
negative integer and [cf. Equation (4) with n--0]

2l.W=oTq-.
The object of this note is to present a rather elementary proof of the fol-
lowing slightly more general q transformation which, in fact, implies
the assertion of the theorem fairly quickly:

(cq q)(c / ab q)
3q2 q, q( 9 )

(cq/a q)(cq,/b; q)N
cq, abq-N/C

q-N32 q’
C

aq’--V/c, bq’--/c
where N is a nonnegative integer, as before, but , is unrestricted, in
general.

Observe that the second member of (9) is symmetric in, and N. Thus,
in it special ease when ,=n (n=0, 1, 2, ...), the left-hand side of (9) leads
immediately to the desired assertion that f(n, N) defined by Equation (5) is
a symmetric function of n and N.

Our proof of the transformation (9) is based upon such fundamental re-
sults as the familiar Heine transformation (el. [2, p. 325, Theorem XVIII]
see also [6, p. 348, Equation (281)]):
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a, b
(abz / c q)oo

21
a z

(10) 21 q, z
(z; q)

q’

c; c;
and its obvious special case when b=c, viz

(11) =o (a q) z= (az q)oo (I z 1"(1)
(q; (z;

which is usually referred to as the q-binomial theorem. Indeed, if we
replace c in (10) by cq, we find for an arbitrary parameter , that

(abzq-/c; q)oo
1 q, cq

(z;q)
.1 q z(12)

(abz / c q) (abz c q) |
I cq; cq

For Iq[l and ]z]]cq/abl, each member of (12) can be expanded in
(absolutely) convergent series of powers o z by means of (3) and (11).
Equating the coefficients of z on the two sides of (12) thus expanded, and
then appealing to the principle o analytic continuation, we are led easily to
the general transformation (9) (and hence also, as already pointed out,
to the assertion of the theorem).
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