57. An Elementary Proof of a Certain Transformation for an n-Balanced Hypergeometric ${ }_{3} \Phi_{2}$ Series ${ }^{\text {¹ }}$

By H. M. Srivastava*) and Slobodan Lj. DamJanović**)
(Communicated by Kôsaku Yosida, M. J. A., June 14, 1988)

A rather elementary proof (based only upon the familiar Heine transformation for ${ }_{2} \Phi_{1}$ is presented for an interesting generalization of a theorem asserting the symmetry in n and N of a function $f(n, N)$ which is defined in terms of an n-balanced basic (or q-) hypergeometric ${ }_{3} \Phi_{2}$ series by Equation (5) below.

For real or complex $q,|q|<1$, let
(1) $\quad(\lambda ; q)_{\mu}=(\lambda ; q)_{\infty} /\left(\lambda q^{\mu} ; q\right)_{\infty}$
for arbitrary λ and μ, where

$$
\begin{equation*}
(\lambda ; q)_{\infty}=\prod_{j=0}^{\infty}\left(1-\lambda q^{j}\right) \tag{2}
\end{equation*}
$$

The generalized basic (or q-) hypergeometric series defined by

$$
{ }_{s+1} \Phi_{s}\left[\begin{array}{ll}
\alpha_{0}, \cdots, \alpha_{s} ; & q, z \tag{3}\\
\beta_{1}, \cdots, \beta_{s} ;
\end{array}\right]=\sum_{l=0}^{\infty} \frac{\left.\left(\alpha_{0} ; q\right)_{l} \cdots \alpha_{s} ; q\right)_{l}}{\left(\beta_{1} ; q\right)_{l} \cdots\left(\beta_{s} ; q\right)_{l}} \frac{z^{l}}{(q ; q)_{l}} \quad(|z|<1)
$$

is said to be n-balanced if it terminates [that is, if at least one of the numerator parameters $\alpha_{0}, \cdots, \alpha_{s}$ is of the form $q^{-N}(N=0,1,2, \cdots)$], if $z=q$, and if (cf. Srivastava [2, p. 108])

$$
\begin{equation*}
\beta_{1} \cdots \beta_{s}=q^{n+1} \alpha_{0} \cdots \alpha_{s} \quad(n=0,1,2, \cdots), \tag{4}
\end{equation*}
$$

it being understood, as usual, that no zeros appear in the denominator of (3). (Thus, for the sake of simplicity, a zero-balanced q-hypergeometric series is just called balanced; see also Askey and Wilson [1, p. 6].) We now recall a transformation formula for an n-balanced ${ }_{3} \Phi_{2}$ series, which is contained in the following

Theorem (Srivastava [4, p. 109]). Let n and N be arbitrary nonnegative integers. Then $f(n, N)$ defined in terms of an n-balanced ${ }_{3} \Phi_{2}$ series by

$$
f(n, N)=\frac{(c ; q)_{N}(c / a b ; q)}{(c / a ; q)_{N}(c / b ; q)_{N}}{ }_{3} \Phi_{2}\left[\begin{array}{c}
a, b, q^{-N} ; \tag{5}\\
c q^{n}, a b q^{1-N} / c ;
\end{array}\right]
$$

*) Department of Mathematics, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada.
**) TANJUG Telecommunicate Center, Zeleni venac 4/III, YU-11000 Beograd, Yugoslavia.
${ }^{\dagger}$) The work of the first author was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant A-7353.

Key words and phrases. Basic (or q-) hypergeometric series, n-balanced series, q-series identity, Jackson's sum, Pfaff-Saalschütz theorem, Sears' transformation, Heine's transformation, q-binomial theorem, analytic continuation.
is a symmetric function of n and N.
Two independent proofs of the theorem were given by Srivastava [4]. One of these proofs was based upon the following q-series identity due to Srivastava and Jain [5, p. 229, Equation (6.1)]:

$$
\begin{equation*}
\sum_{l, m=0}^{\infty} \Omega_{l+m}(\lambda ; q)_{l}(\mu ; q)_{m} \frac{(\mu z)^{l}}{(q ; q)_{l}} \frac{z^{m}}{(q ; q)_{m}}=\sum_{n=0}^{\infty} \Omega_{n}(\lambda \mu ; q)_{n} \frac{z^{n}}{(q ; q)_{n}}, \tag{6}
\end{equation*}
$$

where $\left\{\Omega_{n}\right\}_{n=0}^{\infty}$ is a bounded sequence of complex numbers and the parameters λ and μ are essentially arbitrary, and upon Jackson's sum for a balanced ${ }_{3} \Phi_{2}$ series:

$$
{ }_{3} \Phi_{2}\left[\begin{array}{l}
a, b, q^{-N} ; \tag{7}\\
\underset{\uparrow}{\uparrow}\left(a b q^{1-N} / c ;\right.
\end{array}\right]=\frac{(c / a ; q)_{N}(c / b ; q)_{N}}{(c ; q)_{N}(c / a b ; q)_{N}} \quad(N=0,1,2, \cdots),
$$

which provides a q-extension of the well-known Pfaff-Saalschütz theorem. The other proof of the theorem made use of Sears' transformation (cf. [3, p. 167, Equation (8.3)] ; see also [1, p. 6, Equation (1.28)]):

$$
\begin{align*}
& { }_{4} \Phi_{3}\left[\begin{array}{c}
\alpha, \beta, \gamma, q^{-N} ; \\
\lambda, \mu, \nu ; q, q
\end{array}\right] \tag{8}\\
& =\frac{(\mu / \alpha ; q)_{N}(\lambda \mu / \beta \gamma ; q)_{N}}{(\mu ; q)_{N}(\lambda \mu / \alpha \beta \gamma ; q)_{N}}{ }_{4} \Phi_{3}\left[\begin{array}{c}
\alpha, \lambda / \beta, \lambda / \gamma, q^{-N} ; \\
\hat{\uparrow}, \alpha q^{1-N} / \mu, \alpha q^{1-N} / \nu ; q
\end{array}\right],
\end{align*}
$$

which holds true when each ${ }_{4} \Phi_{3}$ series is balanced, that is, when N is a nonnegative integer and [cf. Equation (4) with $n=0$]

$$
\lambda \mu \nu=\alpha \beta \gamma q^{1-N} .
$$

The object of this note is to present a rather elementary proof of the following slightly more general ${ }_{3} \Phi_{2}$ transformation which, in fact, implies the assertion of the theorem fairly quickly:

$$
\begin{align*}
& \frac{\left(c q^{\nu} ; q\right)_{N}(c / a b ; q)_{N}}{\left(c q^{\nu} / a ; q\right)_{N}\left(c q^{\nu} / b ; q\right)_{N}{ }^{3}} \Phi_{2}\left[\begin{array}{c}
a, b, q^{-N} ; \\
\stackrel{\uparrow}{\downarrow} q, q \\
c q^{\nu}, a b q^{1-N} / c
\end{array}\right] \tag{9}\\
& =q^{-\nu N_{3}} \Phi_{2}\left[\begin{array}{c}
q^{1-\nu-N} / c, q^{-\nu}, q^{-N} ; \\
\underset{q}{\uparrow} q, \frac{a b q}{c} \\
a q^{1-\nu-N} / c, b q^{1-\nu-N} / c ;
\end{array}\right],
\end{align*}
$$

where N is a nonnegative integer, as before, but ν is unrestricted, in general.

Observe that the second member of (9) is symmetric in ν and N. Thus, in it special case when $\nu=n(n=0,1,2, \cdots)$, the left-hand side of (9) leads immediately to the desired assertion that $f(n, N)$ defined by Equation (5) is a symmetric function of n and N.

Our proof of the transformation (9) is based upon such fundamental results as the familiar Heine transformation (cf. [2, p. 325, Theorem XVIII]; see also [6, p. 348, Equation (281)]) :

$$
{ }_{2} \Phi_{1}\left[\begin{array}{c}
a, b ; \tag{10}\\
\underset{~}{\downarrow} ;
\end{array}\right], z, ~ \frac{(a b z / c ; q)_{\infty}}{(z ; q)_{\infty}}{ }_{2} \Phi_{1}\left[\begin{array}{c}
c / a, c / b ; \\
\uparrow \downarrow, \frac{a b z}{c} \\
c ;
\end{array}\right]
$$

and its obvious special case when $b=c, v i z$

$$
\begin{equation*}
\sum_{l=0}^{\infty} \frac{(a ; q)_{l}}{(q ; q)_{l}} z^{l}=\frac{(a z ; q)_{\infty}}{(z ; q)_{\infty}} \quad(|z|<1) \tag{11}
\end{equation*}
$$

which is usually referred to as the q-binomial theorem. Indeed, if we replace c in (10) by $c q^{\nu}$, we find for an arbitrary parameter ν that

$$
\frac{(z ; q)_{\infty}}{(a b z / c ; q)_{\infty}}{ }_{2} \Phi_{1}\left[\begin{array}{c}
a, b ; \tag{12}\\
\underset{\uparrow}{\downarrow} q, z \\
c q^{\nu} ;
\end{array}\right]=\frac{\left(a b z q^{-\nu} / c ; q\right)_{\infty}}{(a b z / c ; q)_{\infty}}{ }_{2} \Phi_{1}\left[\begin{array}{c}
c q^{\nu} / a, c q^{\nu} / b ; \\
\uparrow q, \frac{a b z}{c q^{\nu}} \\
c q^{\nu} ;
\end{array}\right] .
$$

For $|q|<1$ and $|z|<\left|c q^{\nu} / a b\right|$, each member of (12) can be expanded in (absolutely) convergent series of powers of z by means of (3) and (11). Equating the coefficients of z^{N} on the two sides of (12) thus expanded, and then appealing to the principle of analytic continuation, we are led easily to the general ${ }_{3} \Phi_{2}$ transformation (9) (and hence also, as already pointed out, to the assertion of the theorem).

References

[1] R. Askey and J. Wilson: Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials. Mem. Amer. Math. Soc., vol. 54, (no. 319), Amer. Math. Soc., Providence, Rhode Island (1985).
[2] E. Heine: Untersuchungen über die Reihe.... J. Reine Angew. Math., 34, 285328 (1847).
[3] D. B. Sears: On the transformation theory of basic hypergeometric functions. Proc. London Math. Soc., (2) 53, 158-180 (1951).
[4] H. M. Srivastava: A transformation for an n-balanced ${ }_{3} \Phi_{2}$. Proc. Amer. Math. Soc., 101, 108-112 (1987).
[5] H. M. Srivastava and V. K. Jain: q-Series identities and reducibility of basic double hypergeometric functions. Canad. J. Math., 38, 215-231 (1986).
[6] H. M. Srivastava and P. W. Karlsson: Multiple Gaussian Hypergeometric Series. Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto (1985).

