6. A New Class of Analytic Functions Associated with the Ruscheweyh Derivatives ${ }^{\text {t }}$

By H. M. Srivastava,*) Shigeyoshi Owa,**) and O. P. Ahuja***)
(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1988)

1. Introduction and definitions. Let $\mathcal{A}(p)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k} \quad(p \in \mathscr{M}=\{1,2,3, \cdots\}) \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disk $U=\{z:|z|<1\}$. We denote by $f * g(z)$ the Hadamard product (or convolution) of two functions $f(z) \in \mathcal{A}(p)$ and $g(z)$ $\in \mathcal{A}(p)$, that is, if $f(z)$ is given by (1.1) and $g(z)$ is given by

$$
\begin{equation*}
g(z)=z^{p}+\sum_{k=1}^{\infty} b_{p+k} z^{p+k} \quad(p \in \mathscr{N}) \tag{1.2}
\end{equation*}
$$

then

$$
\begin{equation*}
f * g(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} b_{p+k} z^{p+k} \tag{1.3}
\end{equation*}
$$

Following Goel and Sohi [7], we put

$$
\begin{equation*}
D^{n+p-1} f(z)=\frac{z^{p}}{(1-z)^{n+p}} * f(z) \quad(n>-p) \tag{1.4}
\end{equation*}
$$

for the $(n+p-1)$ th order Ruscheweyh derivative of $f(z) \in \mathcal{A}(p)$.
A function $f(z) \in \mathcal{A}(p)$ is said to be in the class $\mathcal{K}(n, p)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left(\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}\right)>\frac{n+p}{2(n+1)} \quad(z \in U) \tag{1.5}
\end{equation*}
$$

for $n \in \mathscr{N}_{0}=\mathscr{N} \cup\{0\}$ and $p \in \mathscr{I}$. In particular, for $p=1$, the class $\mathcal{K}(n, 1)$ becomes the class \mathcal{K}_{n} studied by Ruscheweyh [17] who, in fact, proved the basic property [17, p. 110, Theorem 1]:

$$
\begin{equation*}
\mathcal{K}_{n+1} \subset \mathcal{K}_{n} \quad\left(n \in \mathscr{N}_{0}\right) \tag{1.6}
\end{equation*}
$$

We now introduce the subclass $\mathcal{A}_{n, p}(a, b)$ of $\mathcal{A}(p)$, which is defined below by using the $(n+p-1)$ th order Ruscheweyh derivative of $f(z)$.

Definition. Let the function $f(z)$ defined by (1.1) be in the class $\mathcal{A}(p)$, and set

$$
\begin{equation*}
F_{n, p}(z)=\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}-\frac{n+p}{2(n+1)} \tag{1.7}
\end{equation*}
$$

[^0]for $n \in \Re_{0}$ and $p \in \mathfrak{N}$. Then we say that $f(z)$ is in the class $\mathcal{A}_{n, p}(a, b)$ if it satisfies the inequality
\[

$$
\begin{equation*}
\operatorname{Re}\left\{\left(F_{n, p}(z)\right)^{a}\left(F_{n+1, p}(z)\right)^{b}\right\}>0 \quad(z \in \mathcal{U}) \tag{1.8}
\end{equation*}
$$

\]

for $n \in \mathscr{N}_{0}$ and $p \in \mathscr{N}$; here a and b are real numbers, and each of the power functions is interpreted as its principal value.

Clearly, we have [cf. Equation (1.6)]

$$
\begin{equation*}
\mathscr{A}_{n, 1}(1,0)=\mathcal{K}(n, 1) \equiv \mathcal{K}_{n} \quad \text { and } \quad \mathscr{A}_{n, 1}(0,1)=\mathcal{K}(n+1,1) \equiv \mathcal{K}_{n+1} . \tag{1.9}
\end{equation*}
$$

Several other classes of analytic functions defined by using the nth order Ruscheweyh derivatives of $f(z)$ have been studied in the literature by, for example, Ahuja [1], Al-Amiri ([2], [3]), Bulboaca [5], Fukui and Sakaguchi [6], Goel and Sohi ([8], [9]), Owa ([13], [14], [15]) Kumar and Shukla [10], and Singh and Singh [18].

In this paper we first present an interesting property of the class $\mathcal{A}_{n, p}(a, b)$ and then state a closely related open problem. We also study a general Libera type integral operator $g_{n, p}$ defined by Equation (3.1) below.
2. A property of the class $\mathcal{A}_{n, p}(a, b)$. We first state and prove an interesting property of the class $\mathcal{A}_{n, p}(a, b)$.

Theorem 1. Let $n \in \mathscr{N}_{0}, p \in \mathfrak{N}, 0 \leqq t \leqq 1$, and let a and b be real numbers. Then

$$
\begin{equation*}
\mathcal{A}_{n, p}(a, b) \cap \mathcal{A}_{n, p}(1,0) \subset \mathcal{A}_{n, p}((a-1) t+1, b t) . \tag{2.1}
\end{equation*}
$$

Proof. Following the technique used earlier by Owa [15], let the function $f(z)$ defined by (1.1) be in the class $\mathcal{A}_{n, p}(a, b) \cap \mathcal{A}_{n, p}(1,0)$. Also define
(2.2)

$$
V_{n, p}(z)=\left(F_{n, p}(z)\right)^{a}\left(F_{n+1, p}(z)\right)^{b},
$$

where $F_{n, p}(z)$ is given by (1.7). Since $f(z) \in \mathscr{A}_{n, p}(a, b)$, we have
(2.3) $\quad \operatorname{Re}\left(V_{n, p}(z)\right)>0 \quad(z \in U)$.

We note that $f(z) \in \mathcal{A}_{n, p}(1,0)$. This implies the inequality

$$
\begin{equation*}
\operatorname{Re}\left(F_{n, p}(z)\right)>0 \quad(z \in \mathcal{U}) \tag{2.4}
\end{equation*}
$$

Making use of (2.2), we have

$$
\begin{equation*}
\left(F_{n, p}(z)\right)^{(a-1) t+1}\left(F_{n+1, p}(z)\right)^{b t}=\left(F_{n, p}(z)\right)^{1-t}\left(V_{n, p}(z)\right)^{t} . \tag{2.5}
\end{equation*}
$$

Now we define a function $G(z)$ by

$$
\begin{equation*}
G(z)=\left(F_{n, p}(z)\right)^{1-t}\left(V_{n, p}(z)\right)^{t} . \tag{2.6}
\end{equation*}
$$

It is clear from (2.6) that $G(0)>0$. Consequently, using (2.3) and (2.4), we prove that

$$
\begin{equation*}
|\arg (G(z))| \leqq(1-t)\left|\arg \left(F_{n, p}(z)\right)\right|+t\left|\arg \left(V_{n, p}(z)\right)\right| \leqq \frac{\pi}{2} \tag{2.7}
\end{equation*}
$$

This shows that $G(z)$ maps the unit disk U onto a domain which is contained in the right half-plane, that is, that $\operatorname{Re}(G(z))>0$. Thus we complete the proof of Theorem 1.

By taking $p=1, a=0$, and $b=1$ in Theorem 1, and applying (1.9) and (1.10), we readily have

Corollary 1. Let $n \in \mathscr{N}_{0}$ and $0 \leqq t \leqq 1$. Then

$$
\begin{equation*}
\mathcal{K}(n+1,1) \subset \mathcal{A}_{n, 1}(1-t, t) . \tag{2.8}
\end{equation*}
$$

We conclude this section by stating a problem which is closely related
to our theorem.
Problem. For $n \in \mathscr{I}_{0}, p \in \mathscr{I}$, and $0 \leqq t \leqq 1$, can we prove that

$$
\begin{equation*}
\mathcal{A}_{n, p}(a, b) \subset \mathcal{A}_{n, p}((a-1) t+1, b t) ? \tag{2.9}
\end{equation*}
$$

Remark. In the special case when $p=1$, we know that (2.9) holds true, that is, that

$$
\mathcal{A}_{n, 1}(a, b) \subset \mathcal{A}_{n, 1}((a-1) t+1, b t)
$$

which is proved by Al-Amiri [2], and also by Kumar and Shukla [10].
3. The integral operator $\mathcal{g}_{n, p}$. For a function $f(z)$ belonging to the class $\mathcal{A}(p)$, we define the integral operator $\mathcal{g}_{n, p}$ by (see also Owa and Srivastava [16, p. 126, Equation (2.1)])

$$
\begin{equation*}
\mathcal{g}_{n, p}(f)=\frac{n+p}{z^{n}} \int_{0}^{z} t^{n-1} f(t) d t \quad(n>-p ; p \in \mathscr{H}) . \tag{3.1}
\end{equation*}
$$

The operator $\mathcal{g}_{n, p}$, when $n \in \mathfrak{N}$ and $p=1$, was introduced by Bernardi [4]. In particular, the operator $g_{1,1}$ was studied by Libera [11] and Livingston [12]. For the general operator $g_{n, p}$ defined by (3.1), we prove

Theorem 2. Let the function $f(z)$ defined by (1.1) be in the class $\mathcal{A}_{n, p}(1,0)$ for $n>-p$ and $p \in \mathfrak{N}$. Then

$$
\begin{equation*}
\mathcal{g}_{n, p}(f) \in \mathcal{A}_{n+1, p}(1,0) \quad(n>-p ; p \in \mathcal{I}) . \tag{3.2}
\end{equation*}
$$

Proof. We note from (1.1), (3.1), and (1.4) that, for $f(z) \in \mathcal{A}(p)$,

$$
\begin{equation*}
g_{n, p}(f)=\left(z^{p}+\sum_{k=1}^{\infty} \frac{(n+p)_{k}}{(n+p+1)_{k}} z^{p+k}\right) * f(z) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
D^{n+p-1} f(z)=\left(z^{p}+\sum_{k=1}^{\infty} \frac{(n+p)_{k}}{(1)_{k}} z^{p+k}\right) * f(z), \tag{3.4}
\end{equation*}
$$

where $(\lambda)_{n}=\Gamma(\lambda+n) / \Gamma(\lambda)$ denotes the Pochhammer symbol. By using (3.3) and (3.4), we observe that

$$
\begin{equation*}
D^{n+p} \mathcal{G}_{n, p}(f)=D^{n+p-1} f(z) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
(n+p+1) D^{n+p+1} g_{n, p}(f)-D^{n+p} g_{n, p}(f)=(n+p) D^{n+p} f(z) \tag{3.6}
\end{equation*}
$$

Consequently, we have

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+p+1} g_{n, p}(f)}{D^{n+p} \mathcal{g}_{n, p}(f)}\right\}>\frac{n+p}{n+p+1}\left(\frac{1}{n+p}+\frac{n+p}{2(n+1)}\right) \tag{3.7}
\end{equation*}
$$

Thus we only need to show that the right-hand side of (3.8) cannot be less than $(n+p+1) /\{2(n+2)\}$, that is, that

$$
\begin{equation*}
\Phi(n, p) \equiv(n+2)\left\{2(n+1)+(n+p)^{2}\right\}-(n+1)(n+p+1)^{2} \geqq 0 \tag{3.8}
\end{equation*}
$$

for $n>-p$ and $p \in \mathcal{N}$. Observe that

$$
\Phi(n, p) \geqq \Phi(n, 1) \geqq \Phi(-1,1)=0
$$

This implies the aforementioned inequality which completes the proof of Theorem 2.

Finally, setting $p=1$ in Theorem 2, and applying (1.8) and (1.9), we deduce

Corollary 2. Let the function $f(z)$ be in the class $\mathcal{K}(n, 1)$ for $n>-1$. Then

$$
\begin{equation*}
\mathcal{g}_{n, 1}(f) \in \mathcal{K}(n+1,1) . \tag{3.9}
\end{equation*}
$$

References

[1] O. P. Ahuja: On the radius problem of certain analytic functions. Bull. Korean Math. Soc., 22, 31-36 (1985).
[2] H. S. Al-Amiri: On Ruscheweyh derivatives. Ann. Polon. Math., 38, 87-94 (1980).
[3] --: On the Ruscheweyh-Mocanu alpha convex functions of order n. Mathematica (Cluj), 22(45), 207-213 (1980).
[4] S. D. Bernardi: Convex and starlike univalent functions. Trans. Amer. Math. Soc., 135, 429-446 (1969).
[5] T. Bulboaca: Asupra unor noi clase de functii analitice. Studia Univ. BabesBolyai Math., 26, 42-46 (1981).
[6] S. Fukui and K. Sakaguchi: An extension of a theorem of S. Ruscheweyh. Bull. Fac. Ed. Wakayama Univ. Natur. Sci., 29, 1-3 (1980).
[7] R. M. Goel and N. S. Sohi: A new criterion for p-valent functions. Proc. Amer. Math. Soc., 78, 353-357 (1980).
[8] -: Subclasses of univalent functions. Tamkang J. Math., 11, 77-81 (1980).
[9] -: A new criterion for univalence and its applications. Glasnik Mat. ser. III 16(36), 39-49 (1981).
[10] V. Kumar and S. L. Shukla: Multivalent functions defined by Ruscheweyh derivatives. Indian J. Pure Appl. Math., 15, 1216-1227 (1984).
[11] R. J. Libera: Some classes of regular univalent functions. Proc. Amer. Math. Soc., 16, 755-758 (1965).
[12] A. E. Livingston: On the radius of univalence of certain analytic functions. ibid., 17, 352-357 (1966).
[13] S. Owa: On the Ruscheweyh's new criteria for univalent functions. Math. Japonicae, 27, 77-96 (1982).
[14] _-: On new criteria for analytic functions. Tamkang J. Math., 13, 201-213 (1982).
[15] -: On a certain class of functions defined by using the Ruscheweyh derivatives. Math. Japonicae, 30, 301-306 (1985).
[16] S. Owa and H. M. Srivastava: Some applications of the generalized Libera integral operator. Proc. Japan Acad., 62A, 125-128 (1986).
[17] S. Ruscheweyh: New criteria for univalent functions. Proc. Amer. Math. Soc., 49, 109-115 (1975).
[18] R. Singh and S. Singh: Integrals of certain univalent functions. ibid., 77, 336340 (1979).

[^0]: *) Department of Mathematics, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada.
 **) Department of Mathematics, Kinki University, Higashi-Osaka, Osaka, Japan.
 ***) Department of Mathematics, University of Papua New Guinea, Box 320, University Post Office, Papua New Guinea.
 †) The work of this first author was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant A-7353. This research was carried out at the University of Victoria while the second author was on study leave from Kinki University, Osaka, Japan.

 1980 Mathematics Subject Classification (1985 Revision). Primary 30C45.

