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6 A New Class of Analytic Functions Associated
with the Ruscheweyh Derivatives*)

By H. M. SRIVASTAVA, *) Shigeyoshi OWA,**) and O. P. AHUJA***)

(Communicated by K6saku YOSID), M. Z. A., Jan. 12, 1988)

1. Introduction and definitions. Let /(p) denote the class of func-
ti.ons of the form

(1.1) f(z)--z’-+- av/z,/ (p e ={1, 2, 3, ...})
which are analytic in the unit disk cU= {z Izll}. We denote by f.g(z) the
Hadamard product (or convolution) of two unctions f(z)e t(p) and g(z)
e -(p), that is, i f(z) is given by (1.1) and g(z) is given by

(1.2) g(z)-z’+ bp+z+ (p e ),

then

(1.3) f.g(z) z’+ a+b+z+.
Following Goel and Sohi [7], we put

(1 4) D"+-lf(z)= z ,f(z) (n>--p)
(1-z)+

or the (n+p- 1)th .order Ruscheweyh derivative of f(z) e (p).
A function f(z) e ,_(p) is said to be in the class j(n, p) if and only if

(1.5) Re (-D--+--f(z--)) .) > n+p (z e cU)
D"/-If(z) 2(n+ 1)

or n e 0= U {0} and p e . In particular, or p= 1, the class j(n, 1)
becomes the class J studied by Ruscheweyh [17] who, in act, proved the
basic property [17, p. 110, Theorem 1]"
(1.6) jC+cj (n e 0).

We now introduce the subclass ,,(a, b)o /(p), which is defined
below by using the (n+ p-1)th order Ruscheweyh derivative o f(z).

Definition. Let the function f(z) defined by (1.1) be in the class (p),
and set

(1.7) F (z).- -D--+--f(z--) n,/ p
D -f(z) 2(n -+- 1)
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or n e 0 and p e :. Then we say that f(z) is in the class ,(a, b) if it
satisfies the inequality
(1.8) Re {(r,(z))(rn+ ,(z))} >0 (z e cu)
for n e /0 and p e /; here a and b are real numbers, and each of the power
functions is interpreted as its principal value.

Clearly, we have [cf. Equation (1.6)]
(1.9) ,(1,0)=j(n, 1)=J and ,(0, 1)=j/(n+l, 1)--j/.

Several other classes of analytic unctions defined by using the nth
order Ruscheweyh lerivatives of f(z) have been studied in the literature
by, 2or example, Ahuja [1], Al-Amiri ([2], [3]), Bulboaca [5], Fukui and
Sakaguchi [6], Goel and Sohi ([8], [9]), Owa ([13], [14], [15]) Kumar and
Shukla [10], and Singh and Singh [18].

In this paper we first present an interesting property of the class
,,(a, b) and then state closely related open problem. We also study a
general Libera type integral operator v6, defined by Equation (3.1) below.

2. A property of the class tn,(a, b)o We first state and prove an
interesting property of the class ,(a, b).

Theorem 1. Let nero, p e, 0<_t<_l, and let a and b be real
numbers. Then
(2.1) /,(a, b) //,,(1, 0) /,,((a-- 1)t+ 1, bt).

Proof. Following the technique used earlier by Ow [15], let the
iunction f(z) defined by (1.1) be in the class -.,(a, b)g/,,(1, 0). Also
define
(2.2) V,(z) (F,(z))(F ,(z)),
where F,,(z) is given by (1.7). Since f(z)e ,(a, b), we have
(2.3) Re (Vn,(Z))0 (Z e cU).
We note that f(z)e n,(1, 0). This implies the inequality
(2.4) Re (F,(z)) :>0 (z e cU).
Making use o (2.2), we have
(2.5) (F,(z))-)t (F ,(z))t (F,,(z))-t(Y,,(z)).
Now we define a function G(z) by
(2.6) G(z) (F,,(z))- t(V, (z)).
It is clear .from (2.6) that G(0)0. Consequently, using (2.3) and (2.4), we
prove that

(2.7) Irg (G(z))l<(1--t)larg (F (z))l-Ft larg (V (z))l<----2"
This shows that G(z) maps the unit disk cU onto a domain which is con-
tained in the right hal-plane, that is, that Re (G(z))0. Thus we complete
the proof of Theorem 1.

By taking p=l, a=0, and b=l in Theorem 1, and applying (1.9) and
(1.10), we readily have

Corollary 1. Let n e o and Ot<=l. Then
(2.8) j(n+ 1, 1)cj,(1--t, t).

We conclude this section by stating a problem which is closely related
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to our theorem.
Problem. For n e 0, P e 3, and Otgl, can we prove that

(2.9) n,p(a, b)c,((a-- 1)t+ 1, bt) ?
Remark. In the special case when p=l, we know that (2.9) holds

true, that is, that
#,(a, b),((a- 1)t+ 1, bt),

which is proved by Al-Amiri [2], and also by Kumar and Shukla [10].
3. The integral operator ,,. For a function f(z) belonging to the

class /(p), we define the integral operator fl., by (see also Owa and
Srivastava [16, p. 126, Equation (2.1)])

(3.1) fl,(f)_, n+p i tn-f(t)dt (n p p e ).
Z

The operator v6,, when n e and p=l, was introduced by Bernardi
[4]. In particular, the operator , was studied by Libera [11] and
Livingston [12]. For the general operator cg, defined by (3.1), we prove

Theorem 2. Let the function f(z) defined by (1.1) be in the class
#,(1, 0) for n p and p e . Then
(3.2) n,p(f) e -n+ 1,p(1, O) (n-p p e ).

Proof. We note rom (1.1), (3.1), and (1.4) that, or f(z)e (p),

( (n+p) z/),f(z)(3.3) cq’(f)= z+= (n+p+l)
and

(3.4) D/,_f(z)=(z+ (n+p) z,/).f(z),= (I)
where ()n----F(2+ n)/F(2) denotes the Pochhammer symbol.
and (8.4), we observe that
(3.5) D Pq.p(f)--D -if(z)
and

By using (3.3)

(3.6)
Consequently, we have

{ n+p+lD cq,,p(f) > n+p 1 .+ n+p
(3.7) Re --;---:,., 2(n+ 1)D ,,(j) n+p+l n+p
Thus we only need to show that the right-hand side of (3.8) cannot be less
than (n+ p+ 1)/{2(n+ 2)}, that is, that
(3.8) (n, p)=(n+2){2(n+l)/(n+p)}-(n+l)(n/p+l)>=O
for n p and p e . Observe that

#(n, p)>=(n, 1)>__#(--1, 1)=0.
This implies the aforementioned inequality which completes the proof of
Theorem 2.

Finally, setting p=l in Theorem 2, and applying (1.8) and (1.9), we
deduce

Corollary 2. Let the function f(z) be in the class di(n, 1) for n> --1.
Then
(3.9) o,l(f) e di(n+ 1, 1).
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