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In this paper, we give some elaborate estimates concerning the eigen-
function which behaves singularly when the domain is singularly perturbed.
J.T. Beale [1] has characterized the set of scattering frequencies (i.e. the
square root of the spectrum) of the exterior domain of a bounded ob-
stacle with a partially open cavity when the channel to the cavity is
very narrow. In our previous works [2] and [3], we have dealt with a
Dumbell type domain ()=DUDU Q() where Q() approaches a line
segment as -0 (which is a similar domain perturbation to that of J.
T. Beale) and we have characterized the eigenfunctions o the operator
-/ in the case of the Neumann boundary condition. Roughly speaking,
the complete system of the eigenvalues (ff(5)}=1 and the eigenfunctions
@,:}= orthonormalized in L(9()) are separated as follows,

where

-.,o o

0 o
More precisely, , approaches the k-th eigenfunetion on DUD uni-
f,ormly and ,: approaches the k-th eigenfunetion

1 sin k(x,+ 1)
n-l

of --d/dx on the line segment L= :>0 Q(5) with the Dirichlet boundary
condition on the endpoints of L in some sense. The asymptotic behavior
of , when 50 has been obtained globally in () in [2]. In this paper
we obtain the exact decay estimate of ,: in D D when 0. The
estimates or methods obtained are very useful when we deal with a con-
struction o the solutions of some semilinear elliptic equation on the
singularly perturbed domain.

1. Formulation. We specify the singularly perturbed domain
in R in the following form,

9(5) D UD Q()
where D (i=1, 2) and Q(5) are defined in the following conditions where
x’= (x, x, ., x) e R-.

(A.1) D and D are bounded domains in R (mutually disjoint) with
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smooth boundaries which satisfy the following conditions for some posi-
tive constant . 0.

D {x=(x, x’) e Rn]xl,
--((1, x’) e Rnl lx’l

(A.2) Q()=R,() U R() F()

where p e C((-2, 0]) C(( 2, 0)) is a positive valued monotone increasing
function such that p(0)=2, p(s)= 1 for s e (-2, -1) and the inverse func-
tion p_l. [1, 2][-1, 0] satisfies lim(dp-/d)()=O for any non-
negative integer k. Hereafter we denote the points p=(1, 0,..., 0), p
=(-1, 0, ..., 0) and the sets L= 0<:<:.Q()={(z, 0, ..., 0) e Rn--lgzgl},
(V)= {x e D] Ix-p ]<V} for >0 and i= 1, 2.

Let {Z()}= be the complete system of the eigenvalues of (1.1) ar-
ranged in increasing order (counting multiplicity).

(1.1) 3
0[= on

where A==/x and , denotes the unit outward normal vector on
9().

Let {w}= and {}= be respectively the sequence of the eigenvalues
arranged in increasing order and the complete system of the corresponding
orthonormalized eigenfuncti.ons of the ollowing eigenvalue problem in

DUD.
/A+w=0 in D D,

(1.2)
on

(0=1=..., (),()=., k, 1).
We put 2=(k/2) and S(z)=sin(k/2)(z+l)(kl)which are re-

spectively the eigenvalues and the eigenfunctions o the operator d/dz
on the line segment L with the Dirichlet boundary condition on the
endpoints of L.

We also assume the ollowing condition
(A.3) {};= {};==.

By applying the method of J.T. Beale [1], we can separate the set
o2 the eigenvalues of (1.1) for small )0, i.e. {()};= is expressed as

follows
(.) {z()};== {()};= {()};=,
where lim0 ()=, lim02()=2 (k=l, 2, 3, .). By [2], we can
choose a complete system of the eigenfunctions {.};= of (1.1) which are
decomposed below according to the decomposition of the eigenvalues (1.3),
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(,,.,),.=,, (, ]1),
where , converges to uniformly in D, UD and Ck,lQ() is uniformly
approximated by some solution of the boundary value problem of the
ordinary differential equation on L and

_ .., converges to 0 uni-
formly in DUD and _d’/,(n-/,le<) is uniformly approximated by
S(xO. (See [2].) But this characterization does not contain the behavior
in DUD2 of @, in the sense of uniform convergence. In this note we
give the decay rate or behavior of @, itself in D, UD where d_, is the
(n-1)-dimensional Lebesgue measure of the unit ball of in R-’.

2. Main results.
Theorem. Assume n 3. Then, there exists a positive constant

such that,
(2.1) 0<liminf inf -/,(x)

0 eR() U X (2)

limsup sup n-/l,(X)<
0 xRl() U Xi (2)

(2.2) 0<liminf inf --/lx--pl-],(x)l

limsup sup --Z]x--p-],(x)]

(2.3) 0 <liminf sup

glimsup sup 5-(-)/],:(x)<
(2.4) 0 <liminf 5- (n-/l] ,: ’(

0

-,0

fo.r any kl, V e (0, V,) and i=l, 2.
Remark that lim:0 ],:I,((:=0 holds while ll,?,:l ((:)= 1.

Corollary. There exis$ positive consSanSs 50(k), Cl(k), c(k) for any
k 1 such tha$

holds for e (0, q()) and i= 1, 2.
The details will ppe&r elsewhere.
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