
126 Proc. Japan Acad., 54, Ser. A (1988) [Vol. 64 (A),

On the Complex C Attached to a Certain
C/ass of Lagrangian Set

By Motoo UCHIDA
Department of Mathematics, Faculty of Sciences,

University of Tokyo

(Communicated by Heisuke HIRO.N.KA, M. Z.-., April 12, 1988)

O. Introduction. On a real manifold X, we prove that there exist
microloclly simple sheaves along some kind of Lglangian set AcT*X,
and that such sheaves are unique up to shifts. This has been shown by
M. Kashiwara and P. Schapira when A is smooth, and used in the course
of the study of quantized contact transformations ([2], [3]). In this note
we treat some cases where A is not smooth as well. As n application we
can give microlocal definition of the complex Cx, which is introduced by
P. Schapira [5] or the microlocal study of boundary value problems.

1. Let X be a C manifold, and " T*X-.X be the cotangent bundle
to X. For F e Ob (D (X)), the microsupport SS (F) T*X is defined by
Kashiwara-Schapira [1], [3]. For a point p e T’X, we denote by D/(X; p)
the localization of the category D+(X) by the null system

’(p)--(F e Ob(D (X)) SS(F) p}
(cf. [2], [3]).

Let Y be a closed submanffold of X, and 9 be an open subset of Y.
We take a point I0 e T*X, and assume, at x=z(p) e Y,
(1.1) N* (9)=/= T* Y.
N*(9) denotes the conormal cone of 9 in Y. We denote by p and the
natural associated maps from Y T*X to T*Y and T’X, respectively.

X

Proposition 1.1. Let p e T*X and let F e Ob(D+(X)). Assume (1.1)
and SS(F)cCp-I(N*())a 9) in a neighbourhood of p. Then there exists

Y

a complex M" of Z-modules such that F is isomorphic to M’--M’(R)zZo in
D+(X; p).

Proof. Since SS(F)a-*(Y), it follows from Proposition 6.2.1 of [3]
that there exists G eOb(D+(Y)) such that F is isomorphic to R].G in
D+(X; p) (] denotes the embedding of Y into X). By Proposition 4.1.1 of
[3] our assumption implies that SS(G)c T*Y is contained in N*(2) [2 in

Y

a neighbourhood of x=a(p) e T*Y. Thus we have, taking account o (1.1),
i) supp (G) c/2,

ii) SS(G) N*(2) T*Y.
By Corollary 4.3.3 o [3], at any point x’ e ,

G,,=RT’a(G),=O.
This implies the natural morphism Go--G is an isomorphism in D+(Y ;x).
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Since SS(GI)cT*9 we can apply Proposition 4.1.2 of [3] to GI, e
Ob(D/(2)), and it remains to remark that by (1.1) there exists a unda-
mental system of neighbourhoods {cU} o x such that cUf/2 is contractible.

Q.E.D.
Remark. The Lagrangian set A SS(Z,) T*X is contained in

p-(N*(2) 9). Hence we can replace op-(N*(t) 9) by A in Proposition
Y Y

1.1.
From this proposition we get immediately the ollowing corollaries.
Corollary 1.2. Assume moreover F is simple with shift (1/2) codim Y

on [2 T*X, then F is isomorphic to Z in D/(X p).
Y

Corollary 1.3. Let F, G be two objects of D/(X). Assume that SS(F)
and SS(G) are contained in p-(N*(tg)) in a neighbourhood of p. If

Y

F and G are isomorphic in D/(X;9 T*X), then they are isomorphic in
Y

D+(X p).
Ag ghe end we menion he ease o* closed subsets. Leg X, Y be as

above, and A be a closed subse o Y such gha N**(A):/: T**Y.
Proposition 1.4. Le T*rX nd le F Ob(D+(X)). Assume 88(F)

p-(N*A A) in a neighbourhood of p. Then there exists a complex M"
Y

of Z-modules such that F is isomorphic to M’ in D/(X p).
The proof is similar to that of Proposition 1.1, but in this case we use

the natural morphism G--RF(G) instead of G--G (tg= Int (A)).
2. We assume now X complex analytic, and denote by (C)x the sheaf

of holomorphic functions on X. Let A0 be an R-lagrangian and I-symplectic
conic C submanffold o T*X (cf. [4]), and A be an open conic subset of A0
with C boundary. We define A T*X as the union of A and the half com-
ponent of the union o the complex bicharacteristic leaves of 3A associated
to A.

Theorem 2.1. Let p e A Ao. Then there exists a unique Fae
Ob(D+(X p)) such tha SS(Fa)cA and Fa is simple on A wih shift (1/2)s
--(1/2)n (n=dimc X) where

s=lr(TAo, iT,Ao, T,(-I(p))),
2

and r denotes the Maslov index with respect to the real symplectic structure
of TT*X (c. [2]).

Proof. By Lemma 1.2 of [4] we can find a complex homogeneous sym-
plectic transformation ." T*X--T*C which interchanges (A0, A) and

$ n(TC T*C (=SS(Z)) for some open subset tcR with C boundary.
Let be quantized contact trans2ormation over (cf. [2], [3]) for

K e Ob(D_(X C)), simple with shift n along the lagrangin variety

associated to . Then F=(Z,)[-n] satisfies the conditions. Such F is
unique in D/(X;p) by Corollary 1.3. Q.E.D.

Let X’ be a copy f X.
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Proposition 2.2. Let p e A Ao and let (T’X, p)-(T*X’, p’) be a
germ of a complex homogeneous symplectic transformation at p inter-
changing A and A’ (A’cT*X’: a lagrangian subset). Then there exists a
natural isomorphism"
(2.1) F-F, in D+(X’ p’),
where D/(X p)-+D/(X’ p’) is a quuntized contact transformation over

for a simple sheaf K with shift n.
This proposition follows easily from the uniqueness of the complex F.
Let A be a lagrangian subanalytic set given as above. We define the

complex C on A by:
(2.2) C=/ hom (F, (x).

It is directly deduced from Proposition 2.2 and Theorem 4.1 of [2] that

C’ is defined independently of the choice of the complex symplectic coordi-
nate system of T*X. In other words, in the situaon of Proposition 2.2,
we have a natural isomorphism (i.e., quantized contact transformation) at
p’-- (p)
(2.3) .C

In particular, in the situation of the proof of Theorem 2.1, we have"
(2.4) .C-C,.
We note that Cx is defined for any open subsetR in [5].

Remark. In case Ao--A-A, is nothing but the sheaf of Sato’s
microfunctions ([8]).

Let X be a complex neighbourhood of a real analytic manifold M, and
9 be an open subset of M satisfying the cone condition (1.1):

N* () :/: T*M.
We denote by (M’, X’) a copy of (M, X).

Corollary 2.:. Let p e T*X and let " (T’X, p)-+(T*X, p’) be a germ

of a complex homogeneous symplectic transformation at p interchanging

T*X and T*,X’ (9M’" an open subset). Then there exists a natural iso-
morphism at p"
(2.5) .CI

Remark. The similar result on the complex C/z (M/M:a closed
subset of M) can be deduced from Proposition 1.4 (cf. [5] and Kataoka [7]
for the definition o C/z). That for the case where M/ has C boundary
has been obtained by Kataoka [7].
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