24. On Cayley-Hamilton's Theorem and Amitsur-Levitzki's Identity

By Yoshio Agaoka
Department of Mathematics, Kyoto University

(Communicated by Shokichi Iyanaga, m. J. A., March 12, 1987)

1. The purpose of this note is to prove a generalization of the classical Cayley-Hamilton's theorem and a tensor version of Amitsur-Levitzki's identity concerning matrices.

Let V be an n-dimensional vector space over the field of complex numbers and A_{1}, \cdots, A_{p} be linear endomorphisms of V. We define a linear $\operatorname{map} A_{1} \wedge \cdots \wedge A_{p}: \wedge^{p} V \longrightarrow \wedge^{p} V\left(\bigwedge^{p} V\right.$ is the skew symmetric tensor product of V) by
$\left(A_{1} \wedge \cdots \wedge A_{p}\right)\left(u_{1} \wedge \cdots \wedge u_{p}\right)=(1 / p!) \sum_{\sigma \in ⿷_{p}}(-1)^{\sigma} A_{1} u_{\sigma(1)} \wedge \cdots \wedge A_{p} u_{\sigma(p)}$, where $(-1)^{\sigma}$ is the signature of the permutation $\sigma \in \mathbb{S}_{p}$ and $u_{1}, \cdots, u_{p} \in V$. Note that the equality $A_{\sigma(1)} \wedge \cdots \wedge A_{\sigma(p)}=A_{1} \wedge \cdots \wedge A_{p}$ holds for any permutation $\sigma \in \mathbb{S}_{p}$. For $X \in \operatorname{End}(V)$, we define invariants $f_{i}(X) \in C$ by

$$
\operatorname{det}(\lambda I-X)=\sum_{i=0}^{n} f_{i}(X) \lambda^{n-i},
$$

where I is the identity matrix. Then we have
Theorem 1. Let X be a linear endomorphism of V and p be an integer $(1 \leqq p \leqq n)$. Then, by putting $r=n+1-p$, the following identity holds:

$$
\begin{equation*}
\sum_{a_{a_{i}+\cdots+a_{p}=r}} X^{a_{1}} \wedge \cdots \wedge X^{a_{p}}+f_{3}(X) \sum_{\substack{a_{1}+\cdots+a_{p}=r-1 \\ a_{i} \geq 0}} X^{a_{1}} \wedge \cdots \wedge X^{a_{p}}+\cdots \tag{1}
\end{equation*}
$$

$+f_{r-1}(X) \sum_{\substack{a_{1}+\cdots+a_{p}=1 \\ a_{i} \geq 0}} X^{a_{1}} \wedge \cdots \wedge X^{a_{p}}+f_{r}(X) \cdot I \wedge \cdots \wedge I=0:$

$$
\bigwedge^{p} V \longrightarrow \bigwedge^{p} V
$$

where the sum is taken over all the combinations of integers $\left\{a_{i}\right\}$ satisfying the conditions under Σ. (We consider $X^{0}=I$.)

Remark. In the case $p=1$, the above identity is reduced to the form :

$$
X^{n}+f_{1}(X) X^{n-1}+\cdots+f_{n}(X) \cdot I=0: V \longrightarrow V,
$$

which is nothing but the classical Cayley-Hamilton's theorem.
Proof. We have only to prove the theorem in case where X is a diagonal matrix because such a matrix constitutes a dense subset of the space of matrices. Let $\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ be the eigenvalues of X and $\left\{e_{1}, \cdots, e_{n}\right\}$ be a basis of V such that $X e_{i}=\alpha_{i} e_{i}$. We prove that the element $e_{1} \wedge \cdots \wedge e_{p}$ $\in \bigwedge^{p} V$ is mapped to 0 by the left hand side of the identity (1). We put $V_{1}=\left\{e_{1}, \cdots, e_{p}\right\}$ and $V_{2}=\left\{e_{p+1}, \cdots, e_{n}\right\}$. First, we have
(2) $\quad\left(X^{a_{1}} \wedge \cdots \wedge X^{a_{p}}\right)\left(e_{1} \wedge \cdots \wedge e_{p}\right)=(1 / p!) \sum_{\varsigma_{p}}(-1)^{\sigma} X^{a_{1}} e_{\sigma(1)} \wedge \cdots \wedge X^{a_{p}} e_{\sigma(p)}$

$$
\begin{aligned}
& =(1 / p!) \sum_{\mathscr{s}_{p}}(-1)^{\sigma} \alpha_{\sigma(1)}^{a_{1}} \cdots \alpha_{\sigma(p)}^{a_{p}} e_{\sigma(1)} \wedge \cdots \wedge e_{\sigma(p)} \\
& =(1 / p!) \sum_{\mathscr{s}_{p}} \alpha_{1}^{a_{\sigma(1)}} \cdots \alpha_{p}^{a_{\alpha(p)}} e_{1} \wedge \cdots \wedge e_{p} .
\end{aligned}
$$

We denote by S_{λ} and T_{λ} the Schur functions corresponding to the partition $\lambda=\left(\lambda_{1}, \cdots, \lambda_{s}\right)\left(\lambda_{1} \geq \cdots \geq \lambda_{s}>0\right)$ with variables $\left\{\alpha_{1}, \cdots, \alpha_{p}\right\}$ and $\left\{\alpha_{p+1}, \cdots, \alpha_{n}\right\}$,
respectively. (See [2], [3], [5]. For example, $S_{1}=\alpha_{1}+\cdots+\alpha_{p}$ and $T_{1}=\alpha_{p+1}$ $+\cdots+\alpha_{n}$.) Then for a positive integer k, the Schur function S_{k} is equal to the trace of the linear map $X^{s}: S^{k}\left(V_{1}\right) \rightarrow S^{k}\left(V_{1}\right)$ defined by $X^{s}\left(u_{1} \circ \ldots \circ u_{k}\right)$ $=X u_{1} \circ \cdots \circ X u_{k} . \quad\left(u_{1} \circ \cdots \circ u_{k} \in S^{k}\left(V_{1}\right)\right.$ is the symmetric tensor product of $u_{i} \in V_{1}$.) Hence we have

$$
\begin{aligned}
S_{k} & =\sum_{i_{1} \leq \cdots \leq i_{k}} \alpha_{i_{1}} \cdots \alpha_{i_{k}}=\sum_{a_{1}+\cdots+a_{p}=k} \alpha_{1}^{a_{1}} \cdots \alpha_{p}^{a_{p}} \\
& =(1 / p!) \sum_{\substack{a_{1}+\cdots+a_{p}=k}}^{\alpha_{1}^{a_{\sigma}(1)} \cdots \alpha_{p}^{a_{p}(p)}} .
\end{aligned}
$$

Combining with the equality (2), we have
(3) $\quad \sum_{a_{1}+\cdots+a_{p}=k}\left(X^{a_{1}} \wedge \cdots \wedge X^{a_{p}}\right)\left(e_{1} \wedge \cdots \wedge e_{p}\right)=S_{k} \cdot e_{1} \wedge \cdots \wedge e_{p}$.

Next, we calculate the trace of the linear map $X^{\wedge}: \bigwedge^{k} V \rightarrow \bigwedge^{k} V$ defined by $X^{\wedge}\left(u_{1} \wedge \cdots \wedge u_{k}\right)=X u_{1} \wedge \cdots \wedge X u_{k}$. Since $\wedge^{k} V$ is a direct sum of X^{\wedge} invariant subspaces $\wedge^{l} V_{1} \otimes \wedge^{k-l} V_{2}(l=0, \cdots, k)$, the trace of X^{\wedge} is

$$
\sum_{l=0}^{k}\left(\sum_{i_{1}<\cdots<i_{l}} \alpha_{i_{1}} \cdots \alpha_{i_{l}} \cdot \sum_{j_{1}<\cdots<j_{k-l}} \alpha_{j_{1}} \cdots \alpha_{j_{k-l}}\right)=\sum_{l=0}^{k} S_{12} T_{1 k-l}
$$

which is, by definition, equal to $\sum_{i_{1}<\cdots<i_{k}} \alpha_{i_{1}} \cdots \alpha_{i_{k}}=(-1)^{k} f_{k}(X)$. Hence, combining with (3), we have

$$
\begin{gathered}
f_{k}(X) \sum_{a_{1}+\cdots+a_{p}=r-k} X^{a_{1}} \wedge \cdots \wedge X^{a_{p}}\left(e_{1} \wedge \cdots \wedge e_{p}\right) \\
=(-1)^{k} \sum_{l=0}^{k} S_{1 t} T_{1 k-k} S_{r-k} \cdot e_{1} \wedge \cdots \wedge e_{p}
\end{gathered}
$$

From this equality, it follows that the element $e_{1} \wedge \cdots \wedge e_{p}$ is mapped, by the left hand side of (1), to

$$
\sum_{q=0}^{r}(-1)^{r-q}\left\{S_{q}-S_{1} S_{q-1}+S_{11} S_{q-2}-\cdots+(-1)^{q} S_{1 q}\right\} T_{1 r-q} \cdot e_{1} \wedge \cdots \wedge e_{p}
$$

Using Littlewood-Richardson's rule (cf. [3]), we have

$$
S_{1} S_{q-t}=S_{q-t+1,1 t-1}+S_{q-t, 1},
$$

and substituting this equality into the above, we see that it is equal to $(-1)^{r} T_{1 r} \cdot e_{1} \wedge \cdots \wedge e_{p}$. But this is 0 because $r>\operatorname{dim} V_{2}$. Hence the identity (1) holds.
q. e.d.
2. Next, we state and prove a tensor version of Amitsur-Levitzki's identity by using Theorem 1.*) For $A_{1}, \cdots, A_{p} \in \operatorname{End}(V)$, we define an endomorphism $A_{1} \circ \cdots \circ A_{p}$ of the symmetric tensor space $S^{p}(V)$ by

$$
\left(A_{1} \circ \cdots \circ A_{p}\right)\left(u_{1} \circ \cdots \circ u_{p}\right)=(1 / p!) \sum_{\sigma \in \mathscr{G}_{p}} A_{1} u_{\sigma(1)} \circ \cdots \circ A_{p} u_{\sigma(p)} .
$$

It is easy to see that the equality $A_{\sigma(1)} \circ \cdots \circ A_{\sigma(p)}=A_{1} \circ \cdots \circ A_{p}$ holds for any permutation $\sigma \in \mathbb{S}_{p}$.

Theorem 2. Let $X_{1}, \cdots, X_{2 n}$ be linear endomorphisms of V. Then the following identity holds:

$$
\begin{align*}
& \sum_{\sigma \in \mathfrak{E}_{2 n}}(-1)^{\sigma}\left(X_{\sigma(1)} X_{\sigma(2)}\right) \circ\left(X_{\sigma(3)} X_{\sigma(4)}\right) \circ \cdots \circ\left(X_{\sigma(2 n-1)} X_{\sigma(2 n)}\right)=0 \tag{4}\\
&: S^{n}(V)
\end{align*}>S^{n}(V) .
$$

Remark. It is easy to see that the contraction of the linear map $A_{1} \circ \cdots \circ A_{p}: S^{p}(V) \rightarrow S^{p}(V)$ is

$$
\begin{aligned}
& \sum_{i=1}^{p} \operatorname{Tr} A_{i} \cdot A_{1} \circ \cdots \circ \hat{A}_{i} \circ \cdots \circ A_{p} \\
& \quad+\sum_{i \neq 1}\left(A_{i} A_{j}\right) \circ A_{1} \circ \cdots \circ \hat{A}_{i} \circ \cdots \circ \hat{A}_{j} \circ \cdots \circ A_{p} .
\end{aligned}
$$

Hence, by contracting the above equality (4) $n-1$-times, we obtain a matrix identity

[^0]$$
\sum_{\sigma \in \Theta_{2 n}}(-1)^{\circ} X_{\sigma(1)} X_{o(2)} \cdots X_{\sigma(2 n)}=0: V \longrightarrow V,
$$
which is Amitsur-Levitzki's identity ([1], [6]).
Proof. For $A_{1}, \cdots, A_{p} \in \operatorname{End}(V)$, we define linear maps $A_{1} \square \cdots \square A_{p}: S^{p}(V) \longrightarrow \wedge^{p} V$ and $A_{1} \triangle \cdots \triangle A_{p}: \wedge^{p} V \longrightarrow S^{p}(V)$ by
$$
\left(A_{1} \square \cdots \square A_{p}\right)\left(u_{1} \circ \cdots \circ u_{p}\right)=\frac{1}{p!} \sum_{\sigma \in \epsilon_{p}} A_{1} u_{\sigma(1)} \wedge \cdots \wedge A_{p} u_{\sigma(p)},
$$
and
$$
\left(A_{1} \triangle \cdots \triangle A_{p}\right)\left(u_{1} \wedge \cdots \wedge u_{p}\right)=\frac{1}{p!} \sum_{\sigma \in \mathbb{E}_{p}}(-1)^{\circ} A_{1} u_{\sigma(1)} \circ \cdots \circ A_{p} u_{\sigma(p)} .
$$
(Note that equalities $A_{o(1)} \square \cdots \square A_{\sigma(p)}=(-1)^{\circ} A_{1} \square \cdots \square A_{p}$ and $A_{o(1)} \triangle \cdots$ $\triangle A_{o(p)}=(-1)^{\circ} A_{1} \triangle \cdots \triangle A_{p}$ hold for any $\sigma \in \mathbb{S}_{p}$.) Then the following composition formulas hold.
\[

$$
\begin{aligned}
\left(A_{1} \wedge \cdots \wedge A_{p}\right)\left(B_{1} \square \cdots \square B_{p}\right) & =\frac{1}{p!} \sum(-1)^{\circ}\left(A_{1} B_{o(1)}\right) \square \cdots \square\left(A_{p} B_{\sigma(p)}\right) \\
\left(A_{1} \triangle \cdots \triangle A_{p}\right)\left(B_{1} \square \cdots \square B_{p}\right) & =\frac{1}{p!} \sum(-1)^{\circ}\left(A_{1} B_{\sigma(1)}\right) \circ \cdots \circ\left(A_{p} B_{\sigma(p)}\right) \\
& =\frac{1}{p!} \sum(-1)^{\circ}\left(A_{\sigma(1)} B_{1}\right) \circ \cdots \circ\left(A_{\sigma(p)} B_{p}\right) \\
\left(A_{1} \triangle \cdots \triangle A_{p}\right)\left(B_{1} \wedge \cdots \wedge B_{p}\right) & =\frac{1}{p!} \sum\left(A_{1} B_{\sigma(1)}\right) \triangle \cdots \triangle\left(A_{p} B_{o(p)}\right) .
\end{aligned}
$$
\]

Now, we calculate the following sum of linear maps
(5) $\quad \sum_{o \in \mathcal{E}_{2 n}}(-1)^{\sigma}\left(X_{o(n+1)} \triangle \cdots \Delta X_{\sigma(2 n)}\right)$

$$
\cdot\left(X_{\sigma(1)} \wedge I \wedge \cdots \wedge I\right)\left(X_{o(2)} \square \cdots \square X_{o(n)} \square I\right): S^{n}(V) \longrightarrow S^{n}(V)
$$

in two ways. First, from the above composition formula, we have

$$
\begin{aligned}
& \left(X_{o(1)} \wedge I \wedge \cdots \wedge I\right)\left(X_{o(2)} \square \cdots \square X_{o(n)} \square I\right) \\
= & \frac{1}{n} \sum_{i=2}^{n}(-1)^{i}\left(X_{o(1)} X_{o(i)}\right) \square \cdots \square X_{o(i-1)} \square X_{o(i+1)} \square \cdots \square X_{o(n)} \square I \\
& +\frac{1}{n}(-1)^{n-1} X_{o(1)} \square \cdots \square X_{o(n)} .
\end{aligned}
$$

Hence, by composing with the map $X_{\sigma(n+1)} \triangle \cdots \triangle X_{o(2 n)}$, it follows that (5) is equal to

$$
\begin{aligned}
& \frac{1}{n \cdot n!} \sum_{o \in \varepsilon_{2 n}} \sum_{r \in \varepsilon_{n}} \sum_{i=2}^{n}(-1)^{i}(-1)^{\sigma}(-1)^{r}\left(X_{\sigma \tau(n+1)} X_{\sigma(1)} X_{o(i)}\right) 。 \\
& \left(X_{\sigma \tau(n+2)} X_{\sigma(2)}\right) \cdots \cdots\left(X_{\sigma \tau(n+i-1)} X_{\sigma(i-1)}\right) \circ\left(X_{\sigma r(n+i)} X_{\sigma(i+1)}\right) \cdots \cdots \\
& \left(X_{\sigma r(2 n-1)} X_{\sigma(n)}\right) \circ\left(X_{\sigma \tau(2 n)} I\right)+\frac{1}{n \cdot n!}(-1)^{n-1} \sum_{\sigma \in \Theta_{2 n}} \sum_{r \in \mathbb{E}_{n}}(-1)^{\circ}(-1)^{r} \\
& \cdot\left(X_{o r(n+1)} X_{\sigma(1)}\right) \circ \cdots \circ\left(X_{o r(2 n)} X_{o(n)}\right)
\end{aligned}
$$

($\tau \in \mathbb{S}_{n}$ is considered as a permutation of the letters $\{n+1, \cdots, 2 n\}$.)

$$
\begin{aligned}
= & \frac{1}{n} \sum_{\sigma \in \varepsilon_{2 n}} \sum_{i=2}^{n}(-1)^{i}(-1)^{\sigma}\left(X_{\sigma(n+1)} X_{\sigma(1)} X_{\sigma(i)}\right) \circ\left(X_{o(n+2)} X_{o(2)}\right) \cdots \cdots \circ \\
& \left(X_{\sigma(n+i-1)} X_{\sigma(i-1)}\right)\left(X_{\sigma(n+i)} X_{\sigma(t+1)}\right) \circ \cdots \circ\left(X_{\sigma(2 n-1)} X_{\sigma(n)}\right) \circ\left(X_{\sigma(2 n)} I\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{(-1)^{n-1}}{n} \sum_{\sigma \in \mathfrak{E}_{2 n}}(-1)^{\sigma}\left(X_{\sigma(n+1)} X_{\sigma(1)}\right) \circ \cdots \circ\left(X_{\sigma(2 n)} X_{\sigma(n)}\right) \\
= & \frac{n-1}{n} \sum_{\sigma \in \mathfrak{E}_{2 n}}(-1)^{\sigma}\left(X_{\sigma(n+1)} X_{\sigma(1)} X_{\sigma(2)}\right) \circ\left(X_{\sigma(n+2)} X_{\sigma(3)}\right) \circ \cdots \circ \\
& \left(X_{\sigma(2 n-1)} X_{\sigma(n)}\right) \circ X_{\sigma(2 n)}+\frac{(-1)^{n-1}}{n} \sum_{\sigma \in \mathbb{E}_{2 n}}(-1)^{\sigma}\left(X_{\sigma(n+1)} X_{\sigma(1)}\right) \circ \cdots \circ \\
& \left(X_{\sigma(2 n)} X_{\sigma(n)}\right) .
\end{aligned}
$$

On the other hand, since $X_{\sigma(1)} \wedge I \wedge \cdots \wedge I=(1 / n) \operatorname{Tr} X_{\sigma(1)} \cdot I \wedge \cdots \wedge I$ (the case $p=n$ in Theorem 1), (5) is equal to

$$
\begin{aligned}
& \sum_{\sigma \in \mathbb{E}_{2 n}}(-1)^{\sigma} \frac{1}{n} \operatorname{Tr} X_{\sigma(1)} \cdot\left(X_{\sigma(n+1)} \triangle \cdots \triangle X_{\sigma(2 n)}\right)\left(X_{\sigma(2)} \square \cdots \square X_{\sigma(n)} \square I\right) \\
&= \frac{1}{n \cdot n!} \sum_{\sigma \in \mathbb{E}_{2 n}} \sum_{\tau \in \mathbb{G}_{n}}(-1)^{\sigma}(-1)^{\tau} \operatorname{Tr} X_{\sigma(1)} \cdot\left(X_{\sigma \tau(n+1)} X_{\sigma(2)}\right) \circ \cdots \circ \\
&\left(X_{\sigma \tau(2 n-1)} X_{\sigma(n)}\right) \circ\left(X_{\sigma \tau(2 n)} I\right) \\
&= \frac{1}{n} \sum_{\sigma \in \mathbb{E}_{2 n}}(-1)^{\sigma} \operatorname{Tr} X_{\sigma(1)} \cdot\left(X_{\sigma(n+1)} X_{\sigma(2)}\right) \circ \cdots \circ\left(X_{\sigma(2 n-1)} X_{\sigma(n)}\right) \circ X_{\sigma \sigma(2 n)} .
\end{aligned}
$$

From these two expressions, we obtain the equality
(6) ($6-1) \sum_{\sigma \in \mathbb{G}_{2 n}}(-1)^{\sigma}\left(X_{\sigma(n+1)} X_{\sigma(1)} X_{\sigma(2)}\right) \circ\left(X_{\sigma(n+2)} X_{\sigma(3)}\right) \circ \cdots \circ\left(X_{\sigma(2 n-1)} X_{\sigma(n)}\right)$ 。

$$
\begin{aligned}
& X_{\sigma(2 n)}+(-1)^{n-1} \sum_{\sigma \in \mathbb{E}_{2 n}}(-1)^{\sigma}\left(X_{\sigma(n+1)} X_{\sigma(1)}\right) \circ \cdots \circ\left(X_{\sigma(2 n)} X_{\sigma(n)}\right) \\
= & \sum_{\sigma \in \mathbb{E}_{2 n}}(-1)^{\sigma} \operatorname{Tr} X_{\sigma(1)} \cdot\left(X_{\sigma(n+1)} X_{\sigma(2)}\right) \circ \cdots \circ\left(X_{\sigma(2 n-1)} X_{\sigma(n)}\right) \circ X_{\sigma(2 n)} .
\end{aligned}
$$

Next, starting from the composite

$$
\begin{aligned}
& \sum_{\sigma \in \mathfrak{S}_{2 n}}(-1)^{\sigma}\left(X_{\sigma(n+2)} \triangle \cdots \triangle X_{\sigma(2 n)} \triangle I\right)\left(X_{\sigma(n+1)} \wedge I \wedge \cdots \wedge I\right) \\
& \quad\left(X_{\sigma(1)} \square \cdots \square X_{\sigma(n)}\right): S^{n}(V) \longrightarrow S^{n}(V),
\end{aligned}
$$

we obtain, in the same way, the equality
(7) (n-1) $\sum_{\sigma \in \mathbb{S}_{2 n}}(-1)^{\sigma}\left(X_{\sigma(n+2)} X_{\sigma(n+1)} X_{\sigma(1)}\right) \circ\left(X_{\sigma(n+3)} X_{\sigma(2)}\right) \circ \cdots \circ\left(X_{\sigma(2 n)} X_{\sigma(n-1)}\right)$ 。

$$
\begin{aligned}
& X_{\sigma(n)}+(-1)^{n-1} \sum_{\sigma \in \mathbb{E}_{2 n}}(-1)^{\sigma}\left(X_{\sigma(n+1)} X_{\sigma(1)}\right) \circ \cdots \circ\left(X_{\sigma(2 n)} X_{\sigma(n)}\right) \\
= & \sum_{\sigma \in \mathbb{E}_{2 n}}(-1)^{\sigma} \operatorname{Tr} X_{\sigma(n+1)} \cdot\left(X_{\sigma(n+2)} X_{\sigma(1)}\right) \circ \cdots \circ\left(X_{\sigma(2 n)} X_{\sigma(n-1)}\right) \circ X_{\sigma(n)} .
\end{aligned}
$$

We rearrange the indices in (6), (7) and add these two equalities. Then, two terms are cancelled and we obtain the desired identity (4), q.e.d.

References

[1] A. M. Amitsur and J. Levitzki: Minimal identities for algebras. Proc. Amer. Math. Soc., 1, 449-463 (1950).
[2] N. Iwahori: The Representation Theory of the Symmetric Group and the General Linear Group. Iwanami, Tokyo (1978) (in Japanese).
[3] G. James and A. Kerber: The Representation Theory of the Symmetric Group. Encyclopedia of Math. and its Appl. vol. 16, Addison-Wesley Publ. Company, Reading (1981).
[4] B. Kostant: A theorem of Frobenius, a theorem of Amitsur-Levitzki and cohomology theory. J. Math. Mech., 7, 237-264 (1958).
[5] I. G. MacDonald: Symmetric Functions and Hall Polynomials. Oxford Univ. Press (1979).
[6] J. P. Razmyslov: Trace identities of full matrix algebras over a field of characteristic zero. Math. USSR Izv., 8, 727-760 (1974).

[^0]: *) Dr. K. Kiyohara kindly communicated to the author another proof using the graph theory.

