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Introduction. We consider the Cauchy problem in the category of
holomorphic functions. When the initial surface is non-characteristic, of
course we have the well-known theorem of Cauchy-Kowalewski. On the
other hand, when it is simply characteristic, Cat-chy problem with m initial
data is not soluble and that with m-1 initial data is not unique (m is the
order of the equation), see [4]. Our aim is to show, when the initial sur-
face is characteristic and the multiplicity varies, Cauchy problem with m-1
initial data can be uniquely soluble; we give sufficient conditions. The
Fuchs type operator with weight m--1 will be a particular case.

1. Problem. Let U be a neighborhood of the origin in Cn/,

( 1 ) P(t, x , )-- a_,(t, x)3y-3
s=O

a_.o(t, x) e _)(U),
where t e C, x=(x, ., x) e C, m e N, =(, .,) multi-index,
+... /a, 3=(3/5x).. .(/x)% =/3t, a(t, x) e _)(U) implies that a(t, x)
is defined and holomorphic in U and so is b(x)e ((Uo), U0-U f3 {t-0}. We

_...paqfldenote by P the principal part of P and P(,"))(t x; r, ) 3:33xP(t, x;"m(q,

D, e c, =(, ..., ,) e c.
Assumption A. The hyperplane t=0 is characteristic for the operator

P(t, x O, O) but not simply characteristic, i.e.
( 2 P(0, x v, 0)--0, P,>(0, 0 v, 0)=0 r all [{ 1.

Under the assumption A, we consider the Cauchy problem

(P(t, x , O)u= f(t, x) e _)(U)(P, m--l)"
(ul=o=g(x) e (3(Uo), k=0, 1, ..., m-2.

When there is a neighborhood of the origin V and a unique solution
u e ((V), we say simply that the Cauchy problem (P, m-l) is uniquely
soluble in (.

2. Characteristic coefficients. To state the results, we need to
introduce some quantities. First, let
( 3 ) 2o (3ta,o)(0, 0), Z= a_,,o(0, 0).
Next, we consider the matrix

(4) ((3a_ ,/3x)(O, 0); i" 1 $ n)
]" 1--+n/

where e is the n-dimensional i-th unit vector. Let 2, ..., 2, be the eigen-
values of this matrix. In this paper, we call {20, 2, "", 2,, Z} characteristic
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coefficients. We may suppose for some. k (0 < k <n)
( 5 ) 2, ., 2 =/=0, 2/ 2=0.

3. Results. When 20=/=0, we put the ollowing three conditions.
Condition 1. p20+21+... +fl2+/=/=0 or every p, NU{0}.
Condition 2. I we denote by A the convex hull o {20, 21, ., 2) on the

complex number plane, then 0 A.
Condition 3. For every [a[=l,

( 6 P’)(0, 0, x"; , 0, 0)=0
where x=(x’, x") x’ (x, x), x" (x+, x) and so is =(’, ")

Theorem 1. Assume the assumption A, 20:/:0 and three Conditions
1, 2 and 3, then the Cauchy problem (P, m-l) is uniquely soluble in

When 0--0, we put the following four conditions.
Condition 0". k_l.
Condition 1". 11+ +/32+/:/:0, for every/3 NLJ {0}.
Condition 2*. If we denote by A* the convex hull of {,..., } on the

complex number plane, then 0 A*.
Condition 3". There is an integer h (0 < h< k) such that, if we denote

x=(x’, x", x"’), x’ (x, x), x" (x+, x), x’" (x+, x) and

=(., ", ’"), a (a’, a", a"’),/ (fl’, fl", fl"’) in the same way, then for every

( 7 ) P(’""’0)(t 0 0 x’" ", ’")-,(0,,,0, v, 0, 0.
Theorem 2. Assume the assumption A, 20-0 and four Conditions 0",

1", 2* and 3", then the Cauchy problem (P, m-l) is uniquely soluble in (C).

4. Outline of the proof. We write

a_,.(t, x) a_,;(x)t p
p=O

f(t, x)= F, f(x)t/p
p=O

u(t, x)= u(x)t’/p !.
p=O

We denote
min{r,m}

=0 lal<s r --8
r--O, 1, ..., p. Especially L,o=a,o;o(X)--O and
(8) L,=(p--m)a,o;(x)+ a_,,;o(X)3%.
We have then a recurrence, relation

p+l

( 9 ) L+,u=f/_-- L/,u/_, p=m--1, m, ....
r=2

Each u will be determined by solving this first order equation. We
first study the unique solubility o (9). We should remark that L/,, is a
first order operator whose principal symbol degenerates at x=0. Second,
we investigate, the convergence of the series u(x)t/p !. For details, see
our orthcoming paper.

5. Remarks. a) When k=0, Theorem 1 is the result obtained by
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Y. Hasegawa, [2]. In that case, the equation is said to be of Fuchs type
with weight m--l, see [1].

b) When k-n, the assumption A includes the condition 3.
c) Concerning the first order equations with degenerate principal

symbol, we have many results, see e.g.T. Oshima [5].
d) We give some examples of 2nd order operators for which the

Cauchy problem (P, 1) with initial plane t-0 is not uniquely soluble in (C);
there are divergent power series solutions. They don’t satisfy the condi-
tion 3 or the condition 3*.

Example 1. P--t+ bx2x+ ct,
b,c constants, b:/:0, c:/:0, -1, -2, ....

Example 2. P=x3flt+b+c3t,
b,c constants, b:/:0, c:/:0, -1, --2, ....

Example 3. P=atx3+x3flt+b+c3t,
a, b,c constants, a<0, b<0, c>0.
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