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17. The Vanishing Viscosity Method and a Two-phase
Stefan Problem with Nonlinear Flux
Condition of Signorini Type

By Nobuyuki KENMOCHI* and Irena PAWLOW?™**)
(Communicated by Késaku Yo0SIDA, M. J. A.,, March 12, 1987)

1. Introduction. This paper is concerned with a two-phase Stefan
problem with nonlinear flux condition of the so-called Signorini type. Let
2 be a bounded domain in R¥ (N =2) whose boundary consists of two smooth
disjoint surfaces I',, I';, and let T be a fixed positive number, @ =(0,T) X 2,
2,=(0,T)XTI,, and ¥,=(0, T)XI';. The problem, denoted by (P), is to find
a function u=u(t, x) on @ satisfying

u,—4p(u) =0 in Q,
u(0, -)=1u, in 2,
Bw) =g, on X,

O
o eT(ﬁ(u) 91) on 21.

Here g: R—R is a given function which vanishes on [0, 1], is non-decreasing
on R and bi-Lipschitz continuous both on (— oo, 0] and [1, +o0); 7 is a
multivalued function from R into R given by 7(r) =0 for »>0, 7(0) =(— o0, 0]
and 7(r)=g for r<0; u, is a given initial datum; g, and g, are given func-
tions on 3, and 2, respectively ; (3/on) denotes the outward normal deriva-
tive. For the data we postulate that

(Al) g, (#=0,1) is the trace of a function, denoted by g, again, on @
such that g,e W"*(0,T; H'(Q)NL=(0, T ; H(Q)), my< g, <my, m,=g,=m]
a.e. on @, where m,<m{<<0, m,=>m|>0 are constants.

(A2) (i) uye L=(2), meas. {x e 2; 0<u(x) <1}=0, v,=p(u,) € H'(Q); (ii)
V,=9,0, -) a.e. on I'y, v,==9,(0, -) a.e. on I';; (iii) there are constants >0,
k,<0, k,>0 such that v,<k, a.e. on 2,, and v,=k, a.e. on 2,, where

Q,,={x e Q; dist. (x, I',) <4}, 1=0, 1.

In particular, when g, and g, are independent of time ¢, problem (P)
was treated by Magenes-Verdi-Visintin [6] in the framework of nonlinear
contraction semigroups in L'(£2) (cf. Bénilan [1], Crandall [3]), and the
solution is unique in the sense of Crandall-Liggett [4]. Also, in case the
flux condition is of the form —(3/on)g(w)=r1(t, x, f(w)), with smooth func-
tion 7(¢, , r) on 2, X R, the problem was uniquely solved in variational sense
by Niezgodka-Pawlow [7], Visintin [9] and Niezgodka-Pawlow-Visintin [8].
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However, when the boundary flux is governed by a general time-dependent
maximal monotone graph 7(¢,«, -), we have not noticed any results, in
particular on the uniqueness of solution. The purpose of the present note
is to construct a solution of (P) by the vanishing viscosity method and to
show the uniqueness of the solution constructed in such a way.

We use the following notations : H=L*2), X=H'(Q), X,={ze X; 2=0
a.e. on I}, (-, -> denctes the duality pairing between X{ and X, dS
denotes the usual surface element on Iy, I';, and

(u,v)=f uvde, a(u, v) =f Pu-Fode.
2 2

2. Main results. We give a notion of solution to (P) in the vari-
ational sense.

Definition 1. A function u: [0, T1—H is called a weak solution of (P),
if it satisfies the following (V1)-(V4):

(V1) uwe W**0,T; XDNL=(Q), pw)e W0, T; HYNL*0,T; X);

(V2) u(0)=wu, (in the space H);

(V3) pw)=g, a.e. on X;;

(V4) there is fe L3, such that fer(B(w)—g,) a.e. on ¥, and

W' @), & + a(Bu(t)), C)+f S, )tdS=0 for any { ¢ X, and a.e. t [0, T].

It should be remarked that if B(u(t)) e H(£,,,) for some §>0, then
JS@&, )=—@/on)pu, -)) on I', in (V4).

Now, consider approximations g’ of g and 7, of 7, defined by

p@)=pr)+vr, ve(0,1], 7.(r)=—(—r)"/e, ec(0,1].
Then we denote by (P), the problem (P) with 7 replaced by 7., and by (P)’
the problem (P) with g and u, replaced by p* and u;=(8)"'(v,). The prob-
lems (P)., (P) represent standard approximations to (P) and their weak
solutions are defined correspondingly. .

By virtue of the results in [7] we know that (i) for each << (0,1], (P),
has one and only one weak solution, denoted by u, ; (ii) if 0<<e<{e<1, then
u,<u, a.e. on Q. Also, by the results in [5], for each v € (0, 1], (P)* has one
and only one weak solution in W*2(0, T ; H)NL=(0, T ; X), which is denoted
by w*.

Definition 2. A function u : [0, T1—H is called a solution of (P) in the
vanishing viscosity sense (in short, a V-solution of (P)), if it is a weak
solution of (P) and if there is a sequence w»e W*%0,T; HY)NL~0,T; X) of
weak solutions of (P)*» such that w*»—u in the weak* topology of L~(Q) as
Nn— -4 co.

Our main results are stated as follows.

Theorem. Suppose (Al) and (A2) hold. Then we have the following
statements :

(a) (P) has at least one V-solution;

() any V-solution of (P) has the property that we W40, T ; L*(2)),
Bw) e L*0, T'; HX(2')), where Q' =8,,U8,; for some §>0;
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(¢) any V-solution of (P) coincides with the limit u* of the weak solu-
tions u, of (P), as e 0.

From this theorem it immediately follows that (P) has one and only
one V-golution, and the weak solutions u* of (P)” converge to the V-solution
u of (P) as v | 0 in such a way that w—u weakly* in L=(Q), p(w")—pu)
strongly in LXQ) and weakly in L*©0, T'; X), (3/on)p(w*)—(3/on)B(u) weakly
in L*(2)) and p'(w*),—pu), weakly in L*(Q).

3. Sketch of the proof. In order to obtain some bounds for V-
solutions of (P) we consider the approximate problem (P); which is the
problem (P) with g, 7, u, replaced by g, 7., us. We denote by u: the weak
solution of (P): for each ve (0,1] and e € (0,1]. We have the following esti-
mates independent of v and .

1) |ulieqy=<M, where M is any constant satisfying |uy| «<M,
B(—M)=m, and pM) =m,.

2 pw)<—ca.e.on@,,=0,T)x2,,and p(u)=ca.e.onQ,,=0,T)
X £2,,; for some constants ¢>0 and §>0.

@ {p@); 0<v<1, 0<e<1} is bounded in W"%0,T; H)NL=(0,T; X)
and in L}, T; H*(2)), with 2'=0,,U %2, for some §>0, and hence {u:;
0<v<1, 0<e£1} is bounded in W20, T ; L*2)).

In fact, estimates (1) and (2) are obtained from assumptions (A1), (A2)
and the usual comparison results, and (8) is shown by making use of regu-
larity results in Brézis [2; Chapter 1]. Next, by the monotonicity of solu-
tions u2 with respect to ¢ we have:

(4) For each ve (0,11, u2 1w strongly in L*Q) and weakly in W*%(0,
T; H)ase |0, and {#; 0<v<1} has the same bounds as (1)—(3).

Besides, by the uniqueness of solution to (P), and estimates (1)-(3) we
see :

(6) For each ¢€(0,1], w2—u, weakly* in L=(Q),, *(u2)—p(u.) strongly
in L(Q) and weakly in L*0, T; X), (@/on)p(u2) —(@/an)p(u.) strongly in
L}, and p'(u2),—p(u.), weakly in L*Q) as v | 0, and moreover {u,; 0<e
<1} has the same bounds as (1)-(3).

Using the facts (1)-(5), we can prove the theorem as follows. Let u*
be the limit of u, as ¢ | 0. Note that there exists a sequence {v,} with v, | 0
(as n— co) such that wr—u weakly* in L=(Q), p(u)— p(u) strongly in L*(Q)
and weakly in L*0, T; X), (9/on)p(w)— (@/on)pla) weakly in L* (X)), and
p(wn),—p(u), weakly in L*(Q) for some function « € L=(Q). Then both u*
and u are weak solutions of (P), and by definition u is a V-solution of (P).
Moreover, u*<u a.e. on @, since w»<wra.e. on Q. Besides, pu*), p(u)
e LX0, T ; H*(£2))). Hence by monotonicity arguments (3/on)p(u) < (3/an)f(u*)
a.e. on X, and for the solution ¢ of —42=0 in Q with {=0o0n I, and {=1

on I';, we observe from (V4) that
U @) —u*'@t), £ —(Bu(t)) — pu*(t)), 40
4 Gty ) — g, ) Eas [ (B0 ) 0800 ) g

on on
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for a.e. te[0,T]. Noting (3/07)(=0 on I';, we have
dit(u(t)—u*(t), O =<' t)—u*(), £ <0 for a.e. t € [0, T].

Since {>0 and u(t, -)=u*(t, -) in 2, this implies u=u* on Q.
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