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The Vanishing Viscosity Method and a Two.phase
Stefan Problem with Nonlinear Flux

Condition of Signorini Type

By Nobuyuki KENMOCHI*) and Irena PAWLOW**)

(Communicated by KSsaku YOSIDA, M.J.A., March 12, 1987)

1. Introduction. This paper is concerned with a two-phase Stefan
problem with nonlinear flux condition of the so-called Signorini type. Let
9 be a bounded domain in R (N2) whose boundary consists of two smooth
disjoint surfaces F0, F, and let T be a fixed positive number, Q--(0, T) /2,
X0--(0, T)Fo, and X=(0, T)F. The problem, denoted by (P), is to find
a function u=u(t, x) on Q satisfying

u z/(u) 0 in Q,
u(O, .) =Uo in 9,
(u) go on 2:0,

3fl(U). e r(fl(u)-gl) on 21.

Here fl R-+R is a given function which vanishes on [0, 1], is non-decreasing
on R and bi-Lipschitz continuous both on (-oo, 0] and [1, +co); is a
multivalued function from R into R given by y(r)-0 for r0, y(0)--(- oo, 0]
and y(r)-- for r0; u0 is a given initial datum; go and g are given func-
tions on 2:0 and 2:,, respectively; (O/On) denotes the outward normal deriva-
tive. For the data we postulate that

(A1) g (i--O, 1) is the trace of a function, denoted by g again, on Q
such that g e W"(0, T H(9)) Q L(0, T H(9)), mo go too, mg>= m’
a.e. on Q, where mogmgO, mm’>O are constants.

(A2) (i) Uo e L(9), meas. (x e 9; Ouo(x)l}--O, Vo--fl(Uo) e H1(9) (ii)
v0--g0(0, .) a.e. on Fo, Vo>=g,(O, .) a.e. on F,; (iii) there are constants 0,
ko0, k0 such that VoAko a.e. on/20, and vo>=], a.e. on/2,, where

9.={x e/2 dist. (x, F) /}, i=O, 1.
In particular, when go and g are independent of time t, problem (P)

was treated by Magenes-Verdi-Visintin [6] in the framework of nonlinear
contraction semigroups in L*(/2) (cf. Bnilan [1], Crandall [3]), and the
solution is unique in the sense of Crandall-Liggett [4]. Also, in case the
flux condition is of the form --(3/3n)fl(u)=(t,x, fl(u)), with smooth func-
tion ’(t, x, r) on 2: R, the problem was uniquely solved in variational sense
by Niezgodka-Pawlow [7], Visintin [9] and Niezgodka-Pawlow-Visintin [8].
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However, when the boundary flux is governed by a general time-dependent
maximal monotone graph ’(t, x, .), we have not noticed any results, in
particular on the uniqueness of solution. The purpose o the present note
is to construct a solution of (P) by the vanishing viscosity method and to
show the uniqueness of the solution constructed in such a way.

We use the ollowing notations" H--L(2), X--H(2), Xo--(z X; z---O
a.e. on /0}, (’, ") denotes the duality pairing between X and Xo, dS
denotes the usual surface element on F0, /, and

(u, v) uvdx, a(u, v): Zu Zvdx.
J

2. Main results. We give a ntion f solution to (P) in the vari-
ational sense.

Definition 1. A function u’ [0, T]-H is called a weak solution of (P),
if it satisfies the following (V1)-(V4)

(V1) u e W1’2(0, T X) L(Q), (u) e W’2(O, T H) L(O, T X)
(V2) u(O)=uo (in the space H);
(V3) fl(u)-go a.e. on v
(V4) there is feL() such that fe’(fl(u)--g) a.e. on 2, and

(u’(t), ) - a(fl(u(t)), )- f(t, .)dS-O for any e X0 and a.e. t e [0, T].
J

It should be remarked that if fl(u(t))e H(2.) for some 0, then
f(t, .)----(3/3n)fl(u(t, .)) on/ in (V4).

Now, consider approximations fl o fl and Y o Y, defined by

fl(r) fl(r) +,r, , e (0, 1], y(r) (-r) /, e (0, 1].
Then we denote by (P) the problem (P) with " replaced by ’, and by (P)
the problem (P) with fl and u0 replaced by fl and Uo-(fl)-(Vo). The prob-
lems (P), (P) represent standard approximations to (P) and their weak
solutions are defined correspondingly.

By virtue o the results in [7] we know that (i) for ach e (0, 1], (P)
has one and only one weak solution, denoted by u (ii) if 01, then

uu a.e. on Q. Also, by the results in [5], for each , e (0, 1], (P) has one
and only one weak solution in W’(0, T H) L(0, T X), which is denoted
by u.

Definition 2. A function u" [0, T]--H is called a solution of (P) in the
vanishing viscosity sense (in short, a V-solution of (P)), if it is a weak
solution of (P) and if there is a sequence u e W (0, T H) ? L(0, T; X) of
weak solutions of (P) such that w--u in the weak* topology of L(Q) as

Our main results are stated as follows.
Theorem. Suppose (A1) and (A2) hold. Then we have the following

statements
(a) (P) has at least one V-solution;
(b) any V-solution of (P) has the property that u e WI’(O, T; L(2’)),

fl(u) e L2(O, T; H2(2’)), where 9’=90.U 91. for some 0;
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(c) any V-solution of (P)coincides with the limib u* of the weak solu-
tions u of (P) as O.

From this theorem it immediately ollows that (P) has one and only
one V-solution, and the weak slutions u of (P) converge to the V-solution
u of (P) as , $ 0 in such a way that u-+u weakly* in L(Q), (u)-+(u)
strongly in L(Q) and weakly in L(O, T; X), (3/3n)’(u)--(3/3n)fl(u) weakly
in L() and (u)-fl(u)t weakly in L(Q).

:. Sketch of the proof. In order to btain some bunds or V-
solutions o (P) we cnsider the approximate problem (P)i which is the
problem (P) with fl, ’, u0 replaced by , ’, u. We denote by u the weak
solution o (P) or each , e (0, 1] and e (0, 1]. We have the following esti-
mates independent , and e.

(1) [ul()=M, where M is any constant satisfying
/(--M) =<m0 and (M) m.

(2) (u)=--ca.e. on Q0,--(0, T) 20, and fl(ui)>=c a.e. n Q,-(0, T)
t9. for some constants c0 and 0.

(3) (fl(u); 0,1, 0__<1} is bounded in W,(0, T; H)L(O,T; X)
and in L(0, T; H(9’)), with tg’-----tO0,iJ/2. or sme /0, and hence (u;
0,=1, 0gl} is bunded in W,(0, T; L(29).

In act, estimates (1) and (2) are obtained from assumptions (A1), (A2)
and the usual comparison results, and (3) is shown by making use o regu-
larity results in Brzis [2; Chapter 1]. Next, by the monotonicity o solu-
tions u with respect to we have"

(4) For each , e (0, 1], u; u strongly in L(Q) and weakly in W.(0,
T; H) as $ 0, and (u; 01 has the same bounds as (1)-(3).

Besides, by the uniqueness solution t (P) and estimates (1)-(3) we
see

(5) For each e (0, 1], u;--u weakly* in L(Q), (u;)--(u) strongly
in L(Q) and weakly in L(O, T; X), (3/3n)(ui)---(3/3n)(u) strongly in
L(X), and (u)-(u) weakly in L(Q) as 0, and moreover {u 0
1} has the same bunds as (1)-(3).

Using the facts (1)-(5), we can prove the theorem as ollows. Let u*
be the limit of u as $ 0. Note that there exists a sequence {,} with , $ 0
(as n-oz) such that u’.-u weakly* in L(Q), fl(uO-.fl(u) strongly in L(Q)
and weakly in L(O, T; X), (3/n)’(u)-(3/3n)fl[a) weakly in L(X), and
’(u)t-(u)t weakly in L(Q) _for sme unction u e L(Q). Then both u*
and u are weak solutions o (P), and by definition u is a V-solution (P).
Moreover, u*=u a.e. on Q, since uT<=u a.e. n Q. Besides, (u*), fl(u)
e L(0, T; H(tO)). Hence by monotnicity arguments (3/3n)(u)<_(3/3n)(u*)
a.e. on X, and for the solutien 5 of -z/5=0 in tO with 5=0 on F0 and =1
on F, we observe rom (V4) that
(u’(t)-u*’(t), -((u(t))- (u*(t)), )

f on35dS-r (3fl(u(t,.))On 3fl(u*(t’’)))+ ((u(t, .)) (u*(t, .)))-=-
F
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for a.e. t e [0, T]. Noting (8/Sn)>=O on F, we have
d (u(t)--u*(t), )= (u’(t)-u*’(t), } <0 or a.e. t e [0, T].
dt

Since 0 and u(t, .)>=u*(t, .) in/2, this implies u=u* on Q.
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