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Applications of Spreading Models to an Equivalence of
Summabilities and Growth Rate of Cesdro Means

By Nolio OKADA*) and Takashi ITO**)

(Communicated by KSsaku YOSID., M. . A., March 12, 1987)

O Introduction. In this paper, we present two applications of
Brunel-Sucheston spreading models. One application is to estimate, from
above, the growth rate of Cesro means and the other one is to discuss an
equivalence between regular methods of summability. The complete proofs
of our results and related ones will appear elsewhere.

Throughout this paper, X denotes a Banach space, N denotes the set
of all positive integers, and So denotes the vector space of finite scalar
sequences with the canonical unit vector basis (e}.

1. Brunel.Sucheston spreading model. We start by explaining the
concept of the Brunel-Sucheston spreading model. Let {Xn} be a bounded
sequence with no norm Cauchy subsequence in a Banach space X. Suppose
that the limit

lim aXn
i=l

mnx...nk

exists for all (a)= in S0. We shall ll such a sequence {x} a BS-sequence
(named ater Brunel and Sucheston). Then we can define the nonnegative
unction on S0 by

((a)=) "= lim ax
mn...n

It is known that defines a norm on S0 (see [3, p. 296]), hence we shall
write = ae[] in place o ((a)=x) or each (a)= in S0. Let E be the
completion of [S0, ].]. We say that [E,{e}] is the spreading model o
{x}. In [3], Brunel and Sucheston proved that every bounded sequence
in any Banach space with no norm Cauchy subsequence has a subsequence
which is a BS-sequence. Then {x} and its spreading model [E, (en)n] have
the following properties (Spreading Model):
( 1 ) a(e_x-e)l[g[] a(e_-e)][

iAx iA

for each finite subsets A, A of N with AcA and (a) in S0.
(2) lim ax :[ ae

i=l i=1
mn(...n

or every vector (a)= in S0.
( 3 ) For any e0 and k in N there exists an L(, k) in N so that or every
(a)= in So and n in N (i= 1, 2, ., k) with L(e, k)gnn. n,
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Moreover, if in addition, {x} is a weakly null sequence, i.e., weak-limn x
=0, then we have

iA iAi

for each finite subsets A, A of N with AcA and (a) in So.
For proofs of (1) and (19, see [2, p. 360], (2) is obvious and (3) is easily

checked by an s-net argument.
By applying the Brunel-Sueheston spreading model, we get the follow-

ing fundamental result, which is an infinite dimensional version for the
property (3) in (Spreading Model).

Theorem 1. Let {x}, be a BS-sequence in X and [E, {e}] be its
spreading model. Assume that {x.} is a weakly null sequence. Then for
any s>0 and integer t>=2 one can select a subsequence {X’}n of {Xn}n with
the following property"

-(1--s) -- e --2(logt k)sup IIx’,,<ll= Ox’
and

with lafor all k, n in N (i=1, 2,..., k) with n <n.<... <n, (a)__, (0)__
=<1, 10l=l (i=1,2, ...,k).

By using Theorem 1, we can get an "alternative" theorem eoneerning
weakly null sequences.

Theorem 2. For every wekly null sequence {x} in X one can extract
a subsequence {x} of {x} such that either

(1) lim sup 1 ax
or

(2) inf inf 1 Ox

2. Growth rate of Cesro means. In [1], Banach and Saks proved
that L[0, 1] (l<p< c) has the so-called Banach-Saks property by actually
showing the following"

Each weakly null sequence {x} in L[0, 1] has a subsequence {x} which
satisfies

x’l[ O(kTM) if l<p2
= [O(k

Recall that a Banach space X is of type p with l<p2,
constant MI such that for every finite set o vectors {x}= in X we have

Average Ox
It is known that L[0, 1] is of type rain (2, p) (see [5, p. 73]).

We can show the following theorem which is a natural generalization
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of the result of Banach and Saks. Our method of the proof is completely
different from that of Banach aad Saks.

Theorem 3. Let X be a Banach space of type p with lp2 and M
be a type p constant of X. Then for each weakly null sequence {Xn}n in X
one can extract a subsequence {X’n}n SO that

sup ax’ <78M sup IlXnnt
latl_l i=1

for every k,n in N (i=1,2,..., k) with nl<n2<... <n.
Sketch of Proof. Let {X}n be a wekly null sequence in X. We may

assume that {x} has no norm convergent subsequence. By Theorem 1,
{Xn} has a subsequence {X’}n which is a BS-sequence with its spreading
model [E, {e}] and stisfies

I e--2(logk) sup Ix’ll< inf
5 i=1 IOtl =1 i=l

sup atx’ <5 e +3(leg3 k) sup xnll
[ail_l i=l i=l

for each k, n in N (i= 1, 2, ., k) with nl <n2<. <n.
By using the first inequality, we have

1--15= e --2(log )sup Ixl<Average=o= =0x

M sup xtl /,
hence by the second inequality above, we obtain

sup
lai] 11 i=l

g78M sup x kTM

or all k,n in N (i=1,2, ...,k) with nn... n.. An equivalence of regular methods of summability. An infinite
matrix (a,) is called a regular method of summability (see [4, p. 96]), if
the ollowing conditions hold"

(1) sup ]a,l<,

(2) lim a,=l,

( 3 ) lim a, 0 (m 1).

An interesting method of summability is that of Cesro’s
C’=(Cn,) with Cn, "=1In (lmn) and c, "=0 (lnm).

On the other hand, the most trivial one is the identity summability

I’=(,) with 3n," 1 (n=m) and ,’=0 (nero).
For a regular method of summability A=(a,), a bounded sequence

{x} in X is called A-summable to an element x0 in X if

and
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lim a,x--Xo =0.

Now we introduce a stronger notion of summability as ollows. A
bounded sequence {X}n in X is said to be completely A-summable to x0 if
each subsequence of {x} is A-summable to x0. In terms of this complete
summability, we define an equivalence relation among regular methods of
summability as ollows. For regular methods summability A and B, A
is said to be stronger than B i the following cnditin is satisfied:

If a bounded sequence {x} in an arbitrary Banach space is completely
A-summable to Xo, then there is subsequence {X’n}n of {X}n such that
is completely B-summable to Xo.

We say that A is equivalent t B if A is stronger than B and B is
strnger than A.

With respect to this equivalence, we have the fllwing"
Theorem 4. Every regular method of summability A=(a,) is equi-

valent to either Cesro summability or the identity summability according

lim (sup Ibn,ml)---O or lira sup (sup

This result shws that Cesro summability is, in a sense, the most
undamental summability. A part f ur proof of the above theorem
depends upon Theorem 2.
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