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12. A Proof of Existence of The Stable Jacobi Tensor
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Department of Mathematics, Nagoya Institute of Technology

(Communicated by Kunihiko KODAIRA, M. J. A., Feb. 12, 1987)

0. Let M" be a complete Riemannian manifold without conjugate
points and R the curvature tensor of M. Let 7 : (— o0, c0)—M be a geodesic
and let E,, - - -, E, be a parallel orthonormal frame field along 7 with E, (¢)
=7(t). We congider the (n—1) X (n—1) matrix differential equation
) D"®)+R(#)D(t)=0,
where R(t),=<(R(E, E)E,,E ) for any te(—o0, 00). If D(t), —oo<t
< o0, is a solution of (J) and « is a parallel vector field along 7, then D(¢)x(%),
— oo <t< o0, is a Jacobi field along 7. The following theorems play impor-
tant roles in the study of manifolds without conjugate points.

Theorem 1. Let M be a complete simply connected Riemannion mani-
fold without conjugate points and 7 :(— oo, c0)—M a geodesic. If D(t),
— o0 <t< o0, are the solution of (J) with D,(0)=1, D (s)=0 for all >0, then
the sequence D, converges to a Jacobt tensor D along ¥ with D(0)=1, det D(t)
+0 for any t € (— o0, c0) a8 §—>00,

Theorem 2. Let M and v be as above. Then, there is a symmetric
matriz field A along ¥ which satisfies the Ricatti equation, namely A’(t)+
AR +R(@t)=0 for any t € (— oo, o).

The theorems were originally proved by Hopf [5] and Green [4] under
a more general setting. The proof was explained by Eberlein [1],
Eschenburg-O’Sullivan [2] and Goto [3]. The purpose of the present note
is to give a geometrical and visual proof which is simpler to some readers.
The different point from their proof is that we prove Theorem 2 before
Theorem 1. Theorem 1 is an immediate consequence from Theorem 2.

1. Since M is simply connected, all geodesics «:(— o0, 0)—>M are
minimizing and M is diffeomorphic to E*. In particular, all spheres are
of class C~.

Let 7 and D, be as in Theorem 1. D,(%), — oo <t< oo, is obtained by
the following way : Let S(7(0),7(s)) be the sphere with center 7(s) through
7(0) and let v be the unit normal vector field on S(r(0),7(s)) pointing 7(s).
We consider a map ¢ : S (0), 7(8)) X (— o0, c0)—M given by ¢(q, t)=exp tv(q).
We denote by ¢, the map q—¢(q,t). If ¢:(—e, )—S(0),7(s)), ¢(0)=7(0),
is a curve, then ¢o(cXid): (—e, &) X(— 00, c0)—>M is a geodesic variation,
and, thus, ¢,x, — oo <t<oo, is a Jacobi field along 7 for any « € T,,S(7(0),

7(s)). Hence,
D,(t)=¢.x o P;*

for any te(— o0, o0), where P,:T,,M—T,,M is the parallel translation
along 7.
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Since M has no conjugate points, det D,(£)£0 for any t<s. If A,(t)
is the second fundamental form of S (¢), 7(u)) at 7(¢) relative to —7(¢), then
we have

A, =D ®)D,®),
and,
(%) A +A,@+R®)=0,
for any t<s, because ¢,(S(7¥(0),7(s))=SU®),7(s)) (see [2] or [6]). This
implies that A,(t), — oo <t<s, is the symmetric solution of matrix Ricatti
differential equation
(®) A+ X 4 RO=0
with initial condition X(0)=A,(0).
Let — oo <t<s. Then, from Lemma which will be proved in 2,
A,HD=AB)=A.0)
for any u <t<u’<s, namely, for any perpendicular vector « to 7(¢),
since S(7(t), r(s)) separates S(7(t), r(w)) from S (), r(w)) in M. In particular,
A_(0)>A,0)>4,00), for any 0<u<s. Therefore, {4,(0)} converges to a
symmetric matrix A(0) as s—co.

We want to prove that the sequence {A,} of symmetric matrices along
7 converges to a solution of (R) which is defined on (— o0, ). Fix a T>0.
Let C(T) :=max {|(A ., (D, )|, [{A_ 0@, @)|; —T<t<T,z | 1®), |z|=1}.
If s>T+41, then we see by ()

<Az, x| <C(T)
for any —T<t<T and % _| 7(¢), |x|=1. Let F, -..,E, be a parallel ortho-
normal frame field along 7 with 7(¢)=FE,(t). Set A,OE,(t)=>"1a,l),E ()
for t<s. Then, we have
|2, ()., <2C(T),
for any —T<t<T, and ,57=1,2, --.,n—1, since, for i+,
KAWE®)+E0)/V2), (B +E,@)/vV2)<CT),
namely,
[CA,DE;@®), E,(0))|—(<CADE (D), E (D))
+KABE @), E (D)) /2<C(T).
Therefore, we have by integrating (x)

|a,(t')¢,—a,(t>“|s|jf 121 0, (00) 00,0y + R(0)y | < C(T) | — 8],

for any t,t' e [—T, T'l, where Cy(T) :=4(n—1)C(T)*+max {|R(t),|; ¢,7=1,2,
--,m—1, —T<t<T}. This implies that the sequence {4,},.r., is bounded
and equicontinuous on {—T, T}, and, hence, by the convergence property
of {A,(0)},>r.1, converges to a symmetric solution A(f), — oo <t<oo, of (R).
Theorem 2 is proved.

Since D, are Jacobi tensor fields along 7 with D,(0)=1 for all s>>0 and
since D}(0)=A,(0) converges to A(0), we see that D, and D, converges to a
Jacobi tensor field D and its derivative D’ along 7 respectively such that
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D(0)=1I and D'(®)=A(t)D(t) for any t € (— o0, 00). It remains to prove that
det D(t)+0 for any t € (— o0, 00). Suppose for indirect proof that det D(%,)
=0 for some #,. Then, Ker D'(t,) NKer D(t,)#0. This implies that there
is a parallel vector field « along 7 such that D(t)x(t)=0 for any te
(— o0, ), contradicting that D(0)=1. Theorem 1 is proved.

2. Let N be a hypersurface in a Riemannian manifold M and U a
small neighborhood of pe N in M. Assume that N decomposes U into two
components and the signed distance function f from N in U is differentiable.

Lemma. Let N, be a hypersurface in U such that pe N, and f(q)>0
for any qe N,. If A and A, are the second fundamental forms of N and
N, with same orientation, then A<<A, at p.

Proof. LetxeT ,N=T,N,. Let7:[0,¢)—N and 7,:[0,e)—>N, be geo-
desics with 7(0)=7,(0)=«. Then, (f-7)’(0)=0 and (f-7)’(0)>0. Thus,

(A@), )= (—V;qgrad f, 7)) = <'—V7",(0) grad f,7,(0))
= —uwx(grad f,7,)+{grad f(p), V;7:(0)) <{(A,(), z).
The lemma is proved.
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