109. On Periodic Solutions for the Periodic Quasilinear Ordinary Differential System Containing a Parameter

By Seiji Saito and Minoru Yamamoto
Department of Applied Physics, Faculty of Engineering, Osaka University (Communicated by Kôsaku Yosida, m. J. A., Dec. 14, 1987)

1. Introduction. In this paper we deal with the dependence on a parameter λ of T-periodic solutions for the T-periodic quasilinear ordinary differential system:
(1)

$$
x^{\prime}=A(t, x, \lambda) x+\lambda F(t, x, \lambda)+f(t) .
$$

Here A is a real $n \times n$ matrix and F is an \boldsymbol{R}^{n}-valued function. We assume that A and F are defined on $\boldsymbol{R} \times \boldsymbol{R}^{n} \times\left[-\lambda_{0},+\lambda_{0}\right]$, continuous in (t, x, λ) and T-periodic in t, where $\lambda_{0}>0$. We assume that f is an \boldsymbol{R}^{n}-valued function continuous on \boldsymbol{R} and T-periodic.

We consider the associated T-periodic linear system :

$$
\begin{equation*}
x^{\prime}=B(t) x+f(t), \tag{2}
\end{equation*}
$$

where B is a real $n \times n$ matrix continuous on R and T-periodic.
Hypothesis 1. For every f continuous on \boldsymbol{R} and T-periodic, there exists one and only one T-periodic solution for (2).

The qualitative studies of solutions for the periodic quasilinear differential system have been made under Hypothesis 1 (see [1], [2]). When λ is sufficiently small, Cronin [1] has discussed the existence of T-periodic solutions for
(3) $\quad x^{\prime}=B(t) x+\lambda F(t, x, \lambda)+f(t)$
by applying the implicit function theorem. When the Lipschitz conditions are satisfied, Hale [2] has dealt with the continuous dependence on λ of the T-periodic solution for (3) under some additional assumptions.

Theorem 1 in the present paper is the existence theorem of periodic solutions for periodic linear systems which are close to (2) in some sense. Theorem 2 is a strict extension of the standard result (see [1]). Moreover we give an extent that shows how A in (1) is close to B in (2) as well as an extent that shows how small λ is. In Theorem 3 we obtain sufficient conditions for some dependence on λ of periodic solutions for (1). Explicit conditions in Theorem 4 ensure the continuous dependence on λ of the periodic solution for (1).
2. Preliminaries. The symbol $\|\cdot\|$ will denote a norm in R^{n} and the corresponding norm for $n \times n$ matrices. Let C_{T} be the space of \boldsymbol{R}^{n}-valued functions continuous on R and T-periodic with the supremum norm. Let $C[0, T]$ be the space of R^{n}-valued functions continuous on [0,T] with the supremum norm $\|\cdot\|_{\infty}$.

We define a bounded linear operator $\mathcal{L}: C[0, T] \rightarrow \boldsymbol{R}^{n}$ by $\mathcal{L}(x(\cdot))=x(0)$ $-x(T)$ with the norm

$$
\|\mathcal{L}\|=\sup \left\{\|\mathcal{L}(x(\cdot))\| ;\|x\|_{\infty}=1\right\}
$$

Let X_{B} be the fundamental matrix of solutions for the homogeneous system corresponding to (2) such that $X_{B}(0)=I$, where I is the identity matrix. Put $U_{B}=I-X_{B}(T)$, we have $\mathcal{L}\left(X_{B}(\cdot) x_{0}\right)=U_{B} x_{0}$ for $x_{0} \in \boldsymbol{R}^{n}$.

The following lemmas are well known.
Lemma 1. Hypothesis 1 is equivalent to $\operatorname{det} U_{B} \neq 0$ (see [2]).
Lemma 2. If $\operatorname{det} U_{B} \neq 0$, then we can choose a positive constant $\rho(0<\rho<1)$ such that

$$
\begin{equation*}
\left\|U_{B}^{-1}\right\| \leqq 1 / \rho \tag{4}
\end{equation*}
$$

Suppose that Hypothesis 1 holds, and fix a positive number ρ satisfying
(4). We put $r_{0}=M K(1+2 K / \rho)$, where

$$
M=\int_{0}^{T}\|f(s)\| d s \quad \text { and } \quad K=\exp \left(\int_{0}^{T}\|B(s)\| d s\right) .
$$

Let $S_{r}=\left\{x \in \boldsymbol{R}^{n} ;\|x\| \leqq r\right\}$ and let $C_{T, r}=\left\{y \in C_{T} ;\|y\|_{\infty} \leqq r\right\}$, where $r>r_{0}$. Now we assume that three positive numbers δ, Δ and $\lambda_{1}\left(\lambda_{1} \leqq \lambda_{0}\right)$ satisfy the conditions (5)-(6) below.

$$
\begin{equation*}
K^{2} \delta \exp (K \delta) \leqq \rho /\left\{2\left\|U_{B}^{-1}\right\|\right\} \tag{5}
\end{equation*}
$$

(6)

$$
\left\{\lambda_{1} \Delta+M\right\} K \exp (\delta)[1+2 K \exp (\delta) /\{\rho(1-\rho)\}] \leqq r
$$

We assume that A, F satisfy the conditions (7)-(8), respectively.

$$
\begin{align*}
& \int_{0}^{T}\|A(s, x, \lambda)-B(s)\| d s \leqq \delta \quad \text { for } x \in S_{r}, \lambda \in \Lambda_{1} \tag{7}\\
& \int_{0}^{T}\|F(s, x, \lambda)\| d s \leqq \Delta \quad \text { for } x \in S_{r}, \lambda \in \Lambda_{1} \tag{8}
\end{align*}
$$

Here $\Lambda_{1}=\left[-\lambda_{1},+\lambda_{1}\right]$.
3. Theorems. First, we consider the periodic linear non-homogeneous system:
(9) $\quad x^{\prime}=A(t, y(t), \lambda) x+\lambda F(t, y(t), \lambda)+f(t) \quad$ for $y \in C_{T, r}$ together with a boundary condition

$$
\begin{equation*}
\mathcal{L}(x)=0 \quad \text { for } x \in C[0, T] \tag{10}
\end{equation*}
$$

where $\lambda \in \Lambda_{1}$. Put $U_{y}=I-X_{y}(T)$, where X_{y} is the fundamental matrix of solutions for the linear homogeneous system corresponding to (9) such that $X_{y}(0)=I$, we have $\mathcal{L}\left(X_{y}(\cdot) x_{0}\right)=U_{y} x_{0}$ for $x_{0} \in \boldsymbol{R}^{n}$.

Theorem 1. Suppose that Hypothesis 1 holds and that the conditions (5)-(8) are satisfied. Then, for any $y \in C_{T, r}$ and any $\lambda \in \Lambda_{1}$, there exists the inverse of U_{y} such that

$$
\begin{equation*}
\left\|U_{y}^{-1}\right\| \leqq 1 /\{\rho(1-\rho)\} \tag{11}
\end{equation*}
$$

and there exists one and only one solution $x_{v} \in C_{T, r}$ for ((9), (10)) such that

$$
\begin{aligned}
x_{y}(t)= & -U_{y}^{-1}\left[\mathcal{L}\left(p_{y}(\cdot)\right)\right]+\int_{0}^{t} A(s, y(s), \lambda) x_{y}(s) d s \\
& +\lambda \int_{0}^{t} F(s, y(s), \lambda) d s+\int_{0}^{t} f(s) d s \quad \text { for } t \in \boldsymbol{R},
\end{aligned}
$$

where $p_{y}(t)=X_{y}(t) \int_{0}^{t} X_{y}^{-1}(s)\{\lambda F(s, y(s), \lambda)+f(s)\} d s$ for $t \in \boldsymbol{R}$.

This theorem is proved in the same manner as given in the proof of Theorem in [3].

From the above, we obtain the existence theorem of periodic solutions for (1).

Theorem 2. Suppose that Hypothesis 1 holds. If the conditions (5)-(8) are satisfied, then for any $\lambda \in \Lambda_{1}$ there exists at least one T-periodic solution for (1).

Sketch of the proof of Theorem 2. Choose $\lambda \in \Lambda_{1}$. From Theorem 1 we can define $\mathscr{F}: C_{T, r} \rightarrow C_{T, r}$ by $[\mathscr{F}(y)](t)=x_{y}(t)$ for $t \in \boldsymbol{R}$, where x_{y} is the T periodic solution for (9) in $C_{T, r}$. It can be easily seen that \mathscr{F} is a compact continuous operator. By Schauder's fixed point theorem, \mathscr{F} has at least one fixed point in $C_{T, r}$. Thus for $\lambda \in \Lambda_{1}$ there exists at least one T-periodic solution for (1).
Q.E.D.

Now we assume that the following hypothesis holds.
Hypothesis 2. There exists a continuous and strictly increasing function $\mu:\left[0, \lambda_{2}\right] \rightarrow \boldsymbol{R}^{+}\left(0<\lambda_{2} \leqq \lambda_{1}\right)$ such that $\mu(0)=0$ and that

$$
\|A(t, x, \lambda)-B(t)\| \leqq \mu(|\lambda|) \quad \text { for }(t, x, \lambda) \in[0, T] \times S_{r} \times \Lambda_{2}
$$

where $\Lambda_{2}=\left[-\lambda_{2},+\lambda_{2}\right]$ and $\boldsymbol{R}^{+}=[0,+\infty)$.
Then we have the following theorem.
Theorem 3. If, under the assumption in Theorem 2, Hypothesis 2 holds, then for any $\varepsilon>0$ there exists an $\eta(\varepsilon)>0$ such that for all $\lambda,|\lambda| \leqq \eta(\varepsilon)$, there exists at least one T-periodic solution $x(\cdot ; \varepsilon, \lambda)$ for (1) satisfying

$$
\begin{equation*}
\|x(t ; \varepsilon, \lambda)-\pi(t)\| \leqq \varepsilon \quad \text { for } t \in \boldsymbol{R} \tag{12}
\end{equation*}
$$

where π is the T-periodic solution for (2).
Sketch of the proof of Theorem 3. Choose ε such that $0<\varepsilon<r-r_{0}$. Let $\eta=\eta(\varepsilon)$ satisfy the following inequality:

$$
\left\{r_{0} T \mu(\eta)+\eta \Delta\right\} K \exp (\delta)[1+2 K \exp (\delta) /\{\rho(1-\rho)\}] \leqq \varepsilon
$$

and let $C_{T, \varepsilon}=\left\{y \in C_{T} ;\|y\|_{\infty} \leqq \varepsilon\right\}$. Choose λ such that $|\lambda| \leqq \eta(\varepsilon)$.
We consider the following linear non-homogeneous system:

$$
\begin{equation*}
z^{\prime}=A_{1}(t, y(t), \lambda) z+\lambda F_{1}(t, y(t), \lambda)+f_{1}(t, y(t), \lambda) \quad \text { for } y \in C_{T, \varepsilon} \tag{13}
\end{equation*}
$$ together with a boundary condition

$$
\begin{equation*}
\mathcal{L}(z)=0 \quad \text { for } z \in C[0, T] \tag{14}
\end{equation*}
$$

where $A_{1}(t, y(t), \lambda)=A(t, y(t)+\pi(t), \lambda), F_{1}(t, y(t), \lambda)=F(t, y(t)+\pi(t), \lambda)$, and $f_{1}(t, y(t), \lambda)=\{A(t, y(t)+\pi(t), \lambda)-B(t)\} \pi(t)$.

We denote Z_{y} by the fundamental matrix solutions for the linear homogeneous system corresponding to (13) such that $Z_{y}(0)=I$. Put $V_{y}=I$ $-Z_{y}(T)$, we have $\mathcal{L}\left(Z_{y}(\cdot) x_{0}\right)=V_{y} x_{0}$ for $x_{0} \in \boldsymbol{R}^{n}$.

In the same argument as given in the proof of Theorem 1 it follows that for any $y \in C_{T, \varepsilon}$ and any $\lambda \in \Lambda_{2}$ there exists the inverse of V_{y} such that

$$
\left\|V_{y}^{-1}\right\| \leqq 1 /\{\rho(1-\rho)\}
$$

Moreover there exists one and only one solution $z_{y} \in C_{T, 8}$ for ((13), (14)) such that

$$
z_{y}(t)=-V_{y}^{-1}\left[\mathcal{L}\left(q_{y}(\cdot)\right)\right]+\int_{0}^{t} A_{1}(s, y(s), \lambda) z_{y}(s) d s
$$

$$
+\lambda \int_{0}^{t} F_{1}(s, y(s), \lambda) d s+\int_{0}^{t} f_{1}(s, y(s), \lambda) d s \quad \text { for } t \in \boldsymbol{R}
$$

where

$$
q_{y}(t)=Z_{y}(t) \int_{0}^{t} Z_{y}^{-1}(s)\left\{\lambda F_{1}(s, y(s), \lambda)+f_{1}(s, y(s), \lambda)\right\} d s \quad \text { for } t \in \boldsymbol{R} .
$$

By the same argument used in the proof of Theorem 2, there exists at least one T-periodic solution $z(\cdot ; \varepsilon, \lambda) \in C_{T, \varepsilon}$ for (13). Put $x(\cdot ; \varepsilon, \lambda)=z(\cdot ; \varepsilon, \lambda)$ $+\pi(\cdot)$, we can see that there exists at least one T-periodic solution $x(\cdot ; \varepsilon, \lambda)$ for (1) satisfying (12). Q.E.D.

When A, F satisfies the Lipschitz condition, respectively, we have the following theorem on the continuous dependence on λ of periodic solutions for (1).

Hypothesis 3. There exists a positive constant L such that

$$
\left\|A\left(t, x_{1}, \lambda\right)-A\left(t, x_{2}, \lambda\right)\right\| \leqq L\left\|x_{1}-x_{2}\right\|
$$

and that

$$
\left\|F\left(t, x_{1}, \lambda\right)-F\left(t, x_{2}, \lambda\right)\right\| \leqq L\left\|x_{1}-x_{2}\right\|
$$

for any $t \in[0, T], x_{i} \in S_{r}(i=1,2)$ and $\lambda \in \Lambda_{2}$.
Theorem 4. Suppose that the assumption in Theorem 3 and Hypothesis 3 hold. If $\lambda_{2} \leqq \lambda_{2} \Delta+M$ and

$$
\begin{equation*}
2 r L T\left\{K \exp (\delta)+r /\left(\lambda_{2} \Delta+M\right)\right\}<1, \tag{15}
\end{equation*}
$$

then for any $\lambda \in \Lambda_{2}$ there exists one and only one T-periodic solution $x(\cdot ; \lambda)$ for (1). Moreover

$$
x(t ; \lambda) \rightarrow \pi(t) \quad \text { as } \lambda \rightarrow 0
$$

uniformly in $t \in \boldsymbol{R}$.
Remark. From the second assertion of Theorem 4, the T-periodic solution for (1) is continuous in $\lambda \in \Lambda_{2}$.

Sketch of the proof of Theorem 4. Choose $\lambda \in \Lambda_{2}$. First, we consider the operator $\mathscr{F}: C_{T, r} \rightarrow C_{r, r}$ defined by $\mathscr{P}(y)=x_{y}$ for $y \in C_{r, r}$, where x_{y} is the T-periodic solution for (9) in $C_{T, r}$. It is easy to show that

$$
[\mathscr{A}(y)](t)=-X_{y}(t) U_{y}^{-1}\left[\mathcal{L}\left(p_{y}(\cdot)\right)\right]+p_{y}(t) \quad \text { for } t \in \boldsymbol{R}
$$

We shall define k by the left-hand side of (15). It follows that

$$
\left\|\mathscr{F}\left(y_{1}\right)-\mathscr{F}\left(y_{2}\right)\right\|_{\infty} \leqq k\left\|y_{1}-y_{2}\right\|_{\infty} \quad \text { for } y_{1}, y_{2} \in C_{T, r}
$$

From $0<k<1$, the first assertion of the theorem holds.
Choose ε such that $0<\varepsilon<r-r_{0}$. Since the assumption of Theorem 3 holds, we can define the operator $\mathcal{G}: C_{T, \varepsilon} \rightarrow C_{T, \varepsilon}$ by $\mathcal{G}(y)=z_{y}$ for $y \in C_{T, \varepsilon}$, where z_{y} is the T-periodic solution for (13) in $C_{T, s}$. In the same argument as the operator \mathscr{P}, \mathcal{G} is a contraction. Therefore the second assertion holds.
Q.E.D.

References

[1] J. Cronin: Fixed points and topological degree in nonlinear analysis. Math. Surveys, Amer. Math. Soc., no. 11 (1964).
[2] J. Hale: Ordinary Differential Equations. Krieger, Malabar, Florida (1980).
[3] S. Saito and M. Yamamoto: On the existence of periodic solutions for periodic quasilinear ordinary differential systems. Proc. Japan Acad., 63A, 62-65 (1987).

