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107. Interaction of Two Nonlinear Waves at the Boundary

By Toru SASAKI
Department of Mathematics, University of Tokyo

(Communicated by K6saku YOSIDA, M. ;r.A., Dec. 14, 1987)

O. Introduction. In this paper, we will consider the following non-
linear mixed probrem"

t x u--f

in 27-- ((t, x, y) e R Oy,

where f is a smooth unction which will be chosen later and M a positive
number.

On the semilinear Cauchy problem, Rauch and Reed [5] have shown
by a simple example that anomalous singularities arise when three charac-
teristic hypersurfaces X, Z and Z, carrying progressing waves intersect.
On the other hand, Bony [2], [3] and Melrose and Ritter [4] have shown that
the phenomena of interactions of singularities do not occur when two
hypersurfaces X and 27 intersect.

In the case of nonlinear mixed problem, Beals and Mtivier [1] have
shown that when single characteristic hypersurace hits the boundary
transversally, then the solution will be conormal with respect to the union
of the surface and the reflected characteristic hypersurface.

We will apply the method of [5] to the nonlinear mixed problem and
show by an example that anomalous singularities arise when even two
hypersurfaces hit the boundary at the same time.

The author expresses his sincere gratitude to Prof. H. Komatsu, Dr.
M. Yamazaki, and Dr. N. Tose or valuable suggestions.

1. Singularities of the solution to a linear problem. In this section,
we will estimate from below the singularities of he solution V of the
equations

( )V=Zr+
3t 3x 3y

V=o=O

OV =0.

Here F*={(t,,)eR;>O, t>O, <--+t, <z+t} and Zr. is
is characteristic function.

Proposition 1. Sing sup V eotain the orward light eone C with

Pro,o. We will consider sing sup V {t= 1}. or general t, one can
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show the similar assertion.
Case 1. We show that V is not smooth across C2 (y>4-/2}. For

simplicity we assume x--0.
Let

Z(t, x, y)= f E(t--, x-, y-) Z(r, , )dddr
Jo JJ

where E denotes the undmental solution o /t--/x-/y nd
z/=((t,x, y) y-x+/-t, y,x+/t}. HSrmander’s theorem implies
that Z is smooth across C2 {yZ/2}.

Put W=Z-V. Then W=O in F/{y:>/1--x,[xll} and W is
written as

W=ft f E(t-r, x-, y-).(Z\r/ +Z-)(r, , y)ddd.
Jo JJ

Here C-={, , y} >0, <0,>---,>x--}. sume 1,, )
is in the interior region o C; and is the distance of (x, y) and C; f {t 1}.
Then as in [5], we can show that

W>=[ fl E(t--, x--, y-i).Z\r/(r,,i)dddr
JoJJ

>_(const) d/.
This shows that W is not smooth across C f {y >+/-/2}. Thus V is not
smooth across C f {y>4-/2}.

Case 2. Weshowthat V is not smooth across C f {0y-/2}. Put
A={(t,x,y) yx+t, y--x--+z-t}, A=Af{+_y0}, and

Z ft l l E(t , x , y-) (Z/ z)(, , )ddid.
JoJJ

As bove, Z is smooth near the light cone C; {0<y/-}.
Let
W(t, x, y) Z(t, x, y)- V(t, x, y)

--0 E(t-r, x--S, y-).(Z/\r+--Z-\r-)(r,,)dddr.

The integral is integrated over the intersection o (A/\F/)U(A-\F-) and
5,,), where 5,.v) denotes the interior region of the backward light cone
with vertex at (t, x, y).

It is sufficient to estimate the value of W from below when (1, x, y)
is in . Suppose x0, (1, x,y)e and put =/1-x--y, then is
positive. Put

T,= {r e (0, 1) C5,,,) G (A- \F-) =/= }
and

T={ e (0, ) C,, (- \r-)=, C5,, (A + \r+) }.
Then we have

W= E(t--r,x--,y-y).(Z/,r+--Z-\r-)(r,,])ddd
Tx

f [[ E(t-- , x--, y--). (Z+\r+-- Z-\r-)(r, , )dd]dc+
dT, Jd R

w+ w.
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W(t,x, y) is positive because E(t-r, x-, y-) takes constant value
along the arc {(, 2); (x--)+(y-ff=r0} (0r0l-r), and or each arc the
part on which the integrand is positive is longer than the other part. Thus
we have

W(t, x, y)>=_ W(t, x, y)> (const) e/.
This completes the proof of Proposition 1.

Proposition 2. For each MO, there exists cO such that

<c in

Proo.f. Let 9,=9{(t,x,y);x[R,]y]R}. It is sufficient to
show that there exists c,>0 such that

3 Vl<c in 9M,R ,R

or M1 R0. For supp V 9 is contained in 9, if R is sufficiently large.
We write V as ollows

y--).Zr+(r, , )dddr
3033

dO JdR

We will estimate (/y)V+. It is esy to see that

#(t_)_(z_)_y

2 ((t r)-(x )-- (y+-- t)

l I:I Y(t--r--(x--’)+(Y-#--t))drd,.
2z (t--r)--(x--#)--(y----J 2 t)

Here Y denotes the Heaviside unction. I2 (t,x, y) is in 9,, then the
domain o integration o2 each term is contained in a compact set. Thus
each term is bounded in 9,. This shows that (O/Oy)V_ is bounded in

9, by the same wy.

2. Constructing o a nonlinear equation with interacting reflection
of singularities. Using V in the lst section, we shall oonstruct the solution
o the boundary value problem

Ot Ox OY u=f ing

u=0=0.
First of all, put v(t,x,y)=(y--x+t)+--(--y--x+t)+, nd v(t,x,y)
=(y+x+j2t)+--(--y+x+t)+. Here

x (xo)x+= o (x<o).
hen v and satisfy
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vl_-0=0.
Moreover for any positive , u-v.-t-v.V satisfies the equation

ul=o=O.
On the other hand, (a/ay)(v,+v)2 if t is negative. When t is positive,
(a/ay)(v,Wv)=4 in r and (3/ay)(v+v)3 outside

Thus we can see from Proposition 2 that
and (a/ay)uo3+3c in 9F+. We take 3 so small that 3c<1/3 and then
take smooth function fi as

f(X)
0 (X<8+ 1/

hen f((O/O))=SZr, in 9, and e satisfies he equations

u=f u in
t ax 3y

y=o.
Finally we consider the singularities of the solution u. For negative t,

sing supp u is contained only our characteristic planes. But Proposition
1 assures that fr psitive t, sing supp u contains C2 besides those planes.
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