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1. Introduction. In this paper we shall give a necessary and suf-
ficient condition or the convergence of formal solutions of certain type of
analytic equations o general independent variables. The result here is
an extension o that of [3] to equations of general independent variables,
which coincides with the result of [3] in the case of two. independent vari-
ables.

2. Statement of results. Let x=(x,..., X) (d2) be the variabl
in C. For e R and a multi-index a=(a, .,) e N, N=(O, 1, 2, },
we set ,=1... and (x.3)"=(x:3)1.. .(x3), where 3=(3, ...,3) and
O=/3x (]=1, ...,d). Let ml be an integer and let e C. Then we
are concerned with the convergence o.f all ormal solutions of the form
u(x)=x ux/ o, the equation
(2.1) P(x 3)u a,(x)3"u(x)= f(x)x

where a..(x) is analytic at the origin and f(x) is a given analytic unction.
We say that a formal solution u=xeu,x,/i converges if the sum

u,x,/ converges and represents an analytic function in x. Let us
expand a,(x) into the power of x, a,(x)= a,,rxr/ , and let us define
(2.2) M={- e Z; a,,rO or some and }.
Then we assume
(A.1) Mec(eR;+...+0} and Me{eR;,+...+=O} is
contained in some proper cone with apex at the origin.
We define the set F0 by F0=Convex hull o.f (t8 e R; t0, 8 e Me}.

x"g"/a and we denote by p() the m-th homo-We set p()=.a.... ,.,
geneous part of P(0. For e R, =1, we set F( )=( e R [V/--]
e}. Then we define the quantity a, by
(2.3) a, =sup (c e R lim in ]- p(+w)

wherefflimin[-[p(+w)[=0 for every ceR, we put a,= . Note
that a,m, since p(+w) is o.f degree m. Since a, increases as e tends
to zero, we set a--lim0a,. For the fundamental property o.f a we
refer to [3].

We define a differential operator Q(x; )ob(x) by
Q(x ) =P(x, )- a,,, /.,

where m0m.
Let us take , [Ol=l such that p(0)0. We write
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(, ..., 5) and factorize

(2.4) tP(t-)--tP(t-0-}-t-’)-P() 1-I (-(’ t))
j=l

where m>_l and ]0>_1.
Let e R. Then we say that is a smooth characteristic point of p(])

if there exists a factorization (2.4) such that for every satisfying
-(U, 0)--0 there exist a complex neighborhood V() of ’ and a neigh-
borhood V0 of t-0 such that the function (’-t-so t)is differentiable at
s-O uniformly in 5’, and t on V(U)x FoX V0, that is
(2.5) lim s-((’+sw t)-(’ t)} exists uniformly on V(U)XFoX Vo.

8-0

If e C in ’ and t then every such that -(U; 0)=0 is a smooth
characteristic point. Especially if Vp() =/= 0 on p()- 0 then is a smooth
characteristic point.

Let , e R, s e R, and let L(O) be the localization of p() at defined
by
(2.6) p(+sO)--L(O)sq+O(sq/’), L(O)O, q-q()>_O integer.
We assume
(A.2) Either p()=/= 0 or amo holds for each e F0 and non-smooth
characteristic points of p(]), and L(8)g=0 for every 6 e F0, I[-1 and
smooth characteristic points .
Then we have

Theorem 2.1. Assume (A.1) and (A.2). Then all formal solutions of
(2.1) converge if and only if the folio.wing expo.nential co.ndition is satisfied
(2.8) lim inf Ip(+o)l’/ >0.

In case d--2, we can easily show that all characteristic points are
smooth in the above sence. Moreover we can show that (A.2) is equivalent
to
(A.2)’ Either p()=/=0 or amo holds for every. e F0.
Then we have

Corollary 2.2. Suppose that d-2 and that the conditions (A.1)and
(A.2)’ are satisfied. JThen we have the same assertion as in Theorem 2.1.

Remark. Corollary 2.2 is proved in [3]. In [(b), Remarks 2.2;3] a
generalization of Corollary 2.2 to equations of general independent vari-
ables is also given. But it does not contain Corallary 2.2 because the
smoothness of characteristic roots was assumed. Theorem 2.1 improves
this point so that it contains Corollary 2.2.
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