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Our aim in this paper is to prove that a compensated solution (see (4))
of an inhomogeneous parabolic equation (1) converges to a classical solution
of an elliptic equation (2) as t—oo.

(1) A=A~ 4 =2 B.(®)3)u+ f(), t>0, x e R*; u(0, x)=0.

(2) (A4 3101200 Bi@)d)v+ f(w)=c,,  xeR.
Where

A== 5t T
= 0 Lik=1 3_xi‘;
with a natural number ¢ and a complex number p such that Re p>0; B, (x)’s

are functions in a certain class $(R? and “smaller” than Rep; f(x)isin a
class 9°(R%) ; and ¢, is a constant determined from f.

Ag easily seen, the solution % of (1) possibly blows up as t—oco (see
after Proposition 2). Hence we shall consider the compensated solution i
instead of u itself. 4 is written by a Girsanov type formula given in [1], [2],
and it enables us to prove that % converges to solution of (2).

1. We shall state the notations briefly. More precise descriptions
can be found in [1], [2].
For multiindex a and x € R?, we put

ze=[[¢ 2y and 9°=[]r ( aik ) .

For a non-negative number &, H*(R%) is a Banach space consisting of
all complex valued measures p(d¢) on R* with || p|],EJ A+]&D7 | pl(d8) <o,
and F(R?) is a Banach space of all Fourier transforms of J*(R%), i.e. f(x)
=jexp i @), (de), py € MR, and we define as | .= .. fe PR
is bounded and uniformly continuous, and sup,|f(x)|<] f .

Put R*=(0, o), and FH(R*, R?) denotes a set of all complex valued
measures u(t, d¢), te R*, such that (i) pe M(R?) for each te R*, and (ii)
| ety <) — (s, -)|—0 as t—s on R*. F*(R*, R?) is a space consisting of all
Fourier transforms of J*(R*, R%), i.e.

9(t, x)———j exp {i&- a}p,(t, d8),  p, € MR, RY).

2. By a slight modification of the argument in [2], we get:
Proposition 1. Assume that (i) f and B,’s on (1) are in F(R?), and
(i) 3 g _2q | Ballk<Re p. Then (1) possesses o unique classical solution w such
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that o,u, 0°u € F°(R*, R?) for |a|<2q.

On the other hand, for a homogeneous parabolic equation
(3) 0 V=AV+2 ] 4 =0, Bo(®)*v, t>0, xeR?; v(0,x)=f(x),
we know the following result (see [2,3]):

Proposition 2. Under the hypotheses in Proposition 1, (8) possesses
a unique wide sense solution v, and lim,_..||v(¢, -)—e¢,|l,=0 for a constant.c,.

The solution u(¢, x) of (1) is not necessarily finite, when ¢ tends infinity.
For instance, if f(x)=c for a non zero constant ¢, then (¢, )=ct, and
|ul—>oo as t—oo,

Therefore, we introduce a compensated solution #(t, x) instead of u
itself:

(4) Wty D)=ty 2)— X jars20-1 [%aau(t, 0).
Our assertion in this paper is the following.

Theorem. Under the hypotheses in Proposition 1, as t—oo, u(t, 2)
converges to a classical solution of (2) uniformly on compact sets, where c,
18 a constant given in Proposition 2.

Corollary. If the measure p, corresponding to f is absolutely con-
tinuous in the Lebesgue measure, i.e.

1@) —_—j exp{it- 2}/ for fe L(R%,

then c, in Proposition 2 and Theorem is zero.
3. We denote by g,(d}) and v,(dé), |a|=2¢, the measures correspond-
ing to f and B,’s, respectively. Define
p=Ctiayde for ye RY,
HW={ and H@O)=C(+E0+---48&90  for j=2.
Let u be the solution of (1) given in Proposition 1, and let v be that of (3)

in Proposition 2, then u(t, m):jt v(s, x)ds. As in [2], [3], we can write
0

( 5 ) azu(ty CB) == ’U(t, x) =j /'tf(dc) exp {tc : x—p<c>2qt}

+ZZ°=1 Z|a<v|=zq' : 'Z|a<»>(=2q It 2509, ---,a™),
where, with the convention s,=t,

(6) Itxz;a®,- -, a™)= j ds,- - -ds, jﬂf«w
E>81> 00+ >8>0

Xj vaal(s;, d§V) - J. Vo (S, d§™) exp {iH(n+1)- x}

X (T3 GH()*” exp {— p(H{Y (s, —3,)}) exp {—pHln+1Ys,).

4. Using (5) and (6), we shall prove the theorem and the corollary in
the following four steps.

Step 1. First we take a sequence {f™}, m=1,2, ---, in F*(R% such
that || f— f|,—0 as m—oo. By Proposition 1, we have a classical solution
u™ of
(7) U™ = AU™ 4 37 4 w2g Bad U™+ f™ 5 u™(0, £)=0.

{u™} converges to u, and 3,0°u'™ are in F(R*, R for |a|<2q, since f™
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€ F*(R?). We define %™ as (4) with «‘™ in the place of u.
Step 2. We denote by g™ e M*(R% the corresponding measure to
S, and define I'™(t, x ; o, - - -, a™) as (6) with £ in the place of x,. Put

j(m)(t, X a(l), ceey, a(">_=_1<"‘>(t, x; a(l)’ e, a“”)
xP
— 2is1s20-1 T oI (t, 05 a®, - - -, a™),

and this makes sense, because p{™ ¢ H*(R%. Noticing that |y*|<{y)* for
|a|=2q, we get

L ds sup,,<x 081 ™(s, 2 ; a®, « -+, a™)]

*(m)
§c<1+mm(%;),[~'3ﬂ|3amu0- A Banle  1Bl<24,

where C is a positive constant depending only on ¢ and d. Put 6=
D tai=2 1 Bally/Re p, then (4) through (6) derive
oo 2q (m)
(8) L ds Sup, 5 |0,0°4™(8, 2) | < C(IRZI:gIEZ) ’ ’ 181=2q.
Now @™(t, x), together with the special derivatives up to the order 2q,
converges to a certain function %™ (x) uniformly on compact sets as t—oo,
because

SUp ;<& |0°8"(T, ) —3*u™(T", x)|
T
[ s supi.cxlpzras, ), 18120,
T/

on which (8) implies that the right hand side vanishes as T, T7'—oo.
Step 3. We make a similar calculation as in Step 2, and get

. . ca 2| flm) _
(9) supmgl{laﬁu( (t, x)—ofu(t, )| ( +R1§)p(l:||{—0) =
for |f|<2q. In addition, we also have
(10) SUP,so |9t ) —d,1ut, )= SIS =S
~ Rep(1—0)

Since 9, #=v, (10) and Proposition 2 yield
11) lim, ,,..[[0.u™(, -)—c,[,=0  for a constant c,.
Noticing that 9f4™ =a*u™ for |8|=2q, we let t, m—oco on (7). Then the
theorem follows from a combination of the conclusion at Step 2 with (9)
and (11).

Step 4. As in [3], the hypothesis on the corollary implies that ¢,=0
on Proposition 2, and the proof is completed.
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