81. A Convergence of Solutions of an Inhomogeneous Parabolic Equation

By Kunio NISHIOKA

Department of Mathematics, Tokyo Metropolitan University

(Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1987)

Our aim in this paper is to prove that a *compensated solution* (see (4)) of an inhomogeneous parabolic equation (1) converges to a classical solution of an elliptic equation (2) as $t \to \infty$.

(1)
$$\partial_t u = (A + \sum_{|\alpha|=2q} B_{\alpha}(x)\partial^{\alpha})u + f(x), \ t > 0, \ x \in \mathbb{R}^d; \ u(0,x) = 0.$$

$$(2) (A+\sum_{|a|=2g} B_a(x)\partial^a)v+f(x)=c_f, x\in \mathbf{R}^d.$$

Where

$$A\!\equiv\!(-1)^{q-1}\!
ho\sum_{k=1}^drac{\partial^{2q}}{\partial x_k^{2q}}$$

with a natural number q and a complex number ρ such that $\operatorname{Re} \rho > 0$; $B_a(x)$'s are functions in a certain class $\mathcal{P}^0(\mathbf{R}^d)$ and "smaller" than $\operatorname{Re} \rho$; f(x) is in a class $\mathcal{P}^0(\mathbf{R}^d)$; and c_f is a constant determined from f.

As easily seen, the solution u of (1) possibly blows up as $t\to\infty$ (see after Proposition 2). Hence we shall consider the *compensated solution* \tilde{u} instead of u itself. \tilde{u} is written by a *Girsanov type formula* given in [1], [2], and it enables us to prove that \tilde{u} converges to solution of (2).

1. We shall state the notations briefly. More precise descriptions can be found in [1], [2].

For multiindex a and $x \in \mathbb{R}^d$, we put

$$x^a \equiv \prod_{k=1}^d x_k^{a_k}$$
 and $\partial^a \equiv \prod_{k=1}^d \left(\frac{\partial}{\partial x_k}\right)^{a_k}$.

For a non-negative number κ , $\mathcal{M}^{\epsilon}(\mathbf{R}^{d})$ is a Banach space consisting of all complex valued measures $\mu(d\xi)$ on \mathbf{R}^{d} with $\|\mu\|_{\epsilon} \equiv \int (1+|\xi|)^{\epsilon} |\mu|(d\xi) < \infty$, and $\mathcal{G}^{\epsilon}(\mathbf{R}^{d})$ is a Banach space of all Fourier transforms of $\mathcal{M}^{\epsilon}(\mathbf{R}^{d})$, i.e. $f(x) = \int \exp{\{i\xi \cdot x\}} \mu_{f}(d\xi)$, $\mu_{f} \in \mathcal{M}^{\epsilon}(\mathbf{R}^{d})$, and we define as $\|f\|_{\epsilon} \equiv \|\mu_{f}\|_{\epsilon}$. $f \in \mathcal{G}^{0}(\mathbf{R}^{d})$ is bounded and uniformly continuous, and $\sup_{x} |f(x)| \leq \|f\|_{0}$.

Put $R^+\equiv(0,\infty)$, and $\mathcal{M}^\epsilon(R^+,R^d)$ denotes a set of all complex valued measures $\mu(t,d\xi)$, $t\in R^+$, such that (i) $\mu\in\mathcal{M}^\epsilon(R^d)$ for each $t\in R^+$, and (ii) $\|\mu(t,\cdot)-\mu(s,\cdot)\|_{\epsilon}\to 0$ as $t\to s$ on R^+ . $\mathcal{D}^\epsilon(R^+,R^d)$ is a space consisting of all Fourier transforms of $\mathcal{M}^\epsilon(R^+,R^d)$, i.e.

$$g(t,x) = \int \exp{\{i\xi \cdot x\}} \mu_g(t,d\xi), \qquad \mu_g \in \mathcal{M}^\epsilon(\pmb{R}^+,\pmb{R}^d).$$

2. By a slight modification of the argument in [2], we get:

Proposition 1. Assume that (i) f and B_a 's on (1) are in $\mathcal{D}^0(\mathbf{R}^a)$, and (ii) $\Sigma_{|a|=2q} \|B_a\|_0 < \operatorname{Re} \rho$. Then (1) possesses a unique classical solution u such

that $\partial_t u$, $\partial^a u \in \mathcal{G}^0(\mathbb{R}^+, \mathbb{R}^d)$ for $|a| \leq 2q$.

On the other hand, for a homogeneous parabolic equation

 $\partial_t v = Av + \sum_{|a|=2q} B_a(x) \partial^a v, \quad t>0, \quad x \in \mathbb{R}^d; \quad v(0,x) = f(x),$ we know the following result (see [2, 3]):

Proposition 2. Under the hypotheses in Proposition 1, (3) possesses a unique wide sense solution v, and $\lim_{t\to\infty} ||v(t,\cdot)-c_t||_0 = 0$ for a constant c_t .

The solution u(t, x) of (1) is not necessarily finite, when t tends infinity. For instance, if f(x)=c for a non zero constant c, then u(t,x)=ct, and $|u| \to \infty$ as $t \to \infty$.

Therefore, we introduce a compensated solution $\tilde{u}(t,x)$ instead of u itself:

(4)
$$\tilde{u}(t,x) \equiv u(t,x) - \sum_{|a| \leq 2q-1} \frac{x^a}{|a|!} \partial^a u(t,0).$$

Our assertion in this paper is the following.

Theorem. Under the hypotheses in Proposition 1, as $t\to\infty$, $\tilde{u}(t,x)$ converges to a classical solution of (2) uniformly on compact sets, where c_f is a constant given in Proposition 2.

Corollary. If the measure μ_f corresponding to f is absolutely continuous in the Lebesgue measure, i.e.

$$f(x) = \int \exp{\{i\xi \cdot x\}} \hat{f}(\zeta) d\zeta \qquad for \ \hat{f} \in L_1(\mathbf{R}^a),$$

then c_f in Proposition 2 and Theorem is zero.

3. We denote by $\mu_i(d\zeta)$ and $\nu_a(d\xi)$, |a|=2q, the measures corresponding to f and B_a 's, respectively. Define

$$\langle y
angle \equiv (\sum_{k=1}^d y_k^{2q})^{1/2q} \quad ext{ for } y \in \mathbf{R}^d, \ H(1) \equiv \zeta \quad ext{and} \quad H(j) \equiv \zeta + \xi^{(1)} + \cdots + \xi^{(j-1)} \quad ext{ for } j \geq 2.$$

Let u be the solution of (1) given in Proposition 1, and let v be that of (3) in Proposition 2, then $u(t,x) = \int_{0}^{t} v(s,x)ds$. As in [2], [3], we can write

(5)
$$\partial_t u(t,x) = v(t,x) = \int \mu_f(d\zeta) \exp\left\{i\zeta \cdot x - \rho \langle \zeta \rangle^{2q} t\right\} \\ + \sum_{n=1}^{\infty} \sum_{|a^{(1)}|=2q} \cdots \sum_{|a^{(n)}|=2q} I(t,x;a^{(1)},\cdots,a^{(n)}),$$
 where, with the convention $s_0 \equiv t$,

$$(6) I(t, x; a^{(1)}, \dots, a^{(n)}) \equiv \int_{t>s_1>\dots>s_n>0} ds_1 \dots ds_n \int \mu_f(d\zeta) \\ \times \int \nu_{a^{(1)}}(s_1, d\xi^{(1)}) \dots \int \nu_{a^{(n)}}(s_n, d\xi^{(n)}) \exp \{iH(n+1) \cdot x\} \\ \times (\prod_{j=1}^n (iH(j))^{a^{(j)}} \exp \{-\rho \langle H(j) \rangle^{2q} (s_{j-1} - s_j)\}) \exp \{-\rho \langle H(n+1) \rangle^{2q} s_n\}.$$

Using (5) and (6), we shall prove the theorem and the corollary in the following four steps.

Step 1. First we take a sequence $\{f^{(m)}\}, m=1, 2, \dots, \text{ in } \mathcal{G}^{2q}(\mathbf{R}^d) \text{ such }$ that $||f-f^{(m)}||_0 \to 0$ as $m \to \infty$. By Proposition 1, we have a classical solution $u^{(m)}$ of

(7)
$$\partial_t u^{(m)} = A u^{(m)} + \sum_{|a|=2q} B_a \partial^a u^{(m)} + f^{(m)}; \quad u^{(m)}(0, x) = 0.$$
 $\{u^{(m)}\}$ converges to u , and $\partial_t \partial^a u^{(m)}$ are in $\mathcal{D}^0(\mathbf{R}^+, \mathbf{R}^d)$ for $|a| \leq 2q$, since $f^{(m)}$

 $\in \mathcal{G}^{2q}(\mathbf{R}^d)$. We define $\tilde{u}^{(m)}$ as (4) with $u^{(m)}$ in the place of u.

Step 2. We denote by $\mu_f^{(m)} \in \mathcal{M}^{2q}(\mathbf{R}^d)$ the corresponding measure to $f^{(m)}$, and define $I^{(m)}(t, x; a^{(1)}, \dots, a^{(n)})$ as (6) with $\mu_f^{(m)}$ in the place of μ_f . Put

$$ilde{I}^{(m)}(t,x\,;\,a^{{\scriptscriptstyle (1)}},\cdots,a^{{\scriptscriptstyle (n)}}\!\equiv\!I^{{\scriptscriptstyle (m)}}(t,x\,;\,a^{{\scriptscriptstyle (1)}},\cdots,a^{{\scriptscriptstyle (n)}}) \ -\sum_{|eta|\leq 2q-1}rac{x^eta}{|eta|\,!}\partial^eta I^{{\scriptscriptstyle (m)}}(t,0\,;\,a^{{\scriptscriptstyle (1)}},\cdots,a^{{\scriptscriptstyle (n)}}),$$

and this makes sense, because $\mu_f^{(m)} \in \mathcal{M}^{2q}(\mathbf{R}^d)$. Noticing that $|y^a| \leq \langle y \rangle^{2q}$ for |a| = 2q, we get

$$egin{aligned} &\int_0^\infty ds \sup_{|x| \leq K} |\widehat{\sigma}^{eta ilde{I}^{(m)}}(s,x\,;\,a^{{\scriptscriptstyle (1)}},\,\,\cdots,a^{{\scriptscriptstyle (n)}})| \ & \leq & C(1+K)^{2q} rac{\|f^{{\scriptscriptstyle (m)}}\|_0}{(\operatorname{Re}
ho)^{n+1}} \|B_{a^{{\scriptscriptstyle (1)}}}\|_0 \cdots \|B_{a^{{\scriptscriptstyle (n)}}}\|_0, \qquad |eta| \leq & 2q, \end{aligned}$$

where C is a positive constant depending only on q and d. Put $\theta \equiv \sum_{|a|=2q} \|B_a\|_0 / \text{Re } \rho$, then (4) through (6) derive

$$(8) \qquad \int_0^\infty ds \sup_{|x| \leq K} |\partial_t \partial^\beta \tilde{u}^{(m)}(\mathbf{s}, x)| \leq \frac{C(1+K)^{2q} \|f^{(m)}\|_0}{\operatorname{Re} \rho (1-\theta)}, \qquad |\beta| \leq 2q.$$

Now $\tilde{u}^{(m)}(t,x)$, together with the special derivatives up to the order 2q, converges to a certain function $\tilde{u}_{\infty}^{(m)}(x)$ uniformly on compact sets as $t\to\infty$, because

$$\begin{split} \sup_{|x| \leq K} |\partial^{\beta} \tilde{u}^{\scriptscriptstyle (m)}(T,x) - \partial^{\beta} \tilde{u}^{\scriptscriptstyle (m)}(T',x)| \\ = & \int_{T'}^{T} ds \sup_{|x| \leq K} |\partial_{t} \partial^{\beta} \tilde{u}^{\scriptscriptstyle (m)}(s,x)|, \qquad |\beta| \leq 2q, \end{split}$$

on which (8) implies that the right hand side vanishes as T, $T' \rightarrow \infty$.

Step 3. We make a similar calculation as in Step 2, and get

(9)
$$\sup_{|x| \le K} |\partial^{\beta} \tilde{u}^{(m)}(t, x) - \partial^{\beta} \tilde{u}(t, x)| \le \frac{C(1 + K)^{2q} \|f^{(m)} - f\|_{0}}{\operatorname{Re} \rho(1 - \theta)}$$

for $|\beta| \leq 2q$. In addition, we also have

(10)
$$\sup_{t>0} \|\partial_t u^{(m)}(t,\cdot) - \partial_t u(t,\cdot)\|_0 \leq \frac{C \|f^{(m)} - f\|_0}{\operatorname{Re} \rho(1-\theta)}.$$

Since $\partial_t u = v$, (10) and Proposition 2 yield

(11)
$$\lim_{t,m\to\infty} \|\partial_t u^{(m)}(t,\cdot) - c_f\|_0 = 0 \quad \text{for a constant } c_f.$$

Noticing that $\partial^{\beta} \tilde{u}^{(m)} = \partial^{\beta} u^{(m)}$ for $|\beta| = 2q$, we let $t, m \to \infty$ on (7). Then the theorem follows from a combination of the conclusion at Step 2 with (9) and (11).

Step 4. As in [3], the hypothesis on the corollary implies that $c_f = 0$ on Proposition 2, and the proof is completed.

References

- [1] Nishioka, K.: Stochastic calculus for a class of evolution equations. Japan. J. Math., 11, 59-102 (1985).
- [2] —: A stochastic solution of a high order parabolic equation. J. Math. Soc. Japan, 39, 209-231 (1987).
- [3] —: Large time behavior of a solution of a parabolic equation. Proc. Japan Acad., 62A, 371-374 (1986).