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(2)
Where

Our aim in this paper is to prove that a compensated solution (see (4))
of an inhomogeneous parabolic equation (1) converges to a classical solution
of an elliptic equation (2) as t--.
( 1 ) 3u=(A+,,=q B(x)3)u+ f(x), t0, x e R u(0, x)=0.

(A-F ll=q B(x))v-Ff(x)--c, x R.
2q

4 =(-- 1)-P E=1 X
with a natural number q and a complex number p such that Re p>0 B(x)’s
are unctions in a certain class. (R)and "smaller" than Re p; f(x)is in a
class (R) and c is a constant determined from f.

As easily seen, the solution u of (1) possibly blows up as to (see
after Proposition 2). Hence we shall consider the compensated solution
instead of u itself. is written by a Girsanov type formula given in [1], [2],
and it enables us to prove that converges to solution of (2).

1. We shall state the notations briefly. More precise descriptions
can be found in [1], [2].

For multiindex a and x e R, we put

x= x and ( 0 )= ax
For a non-negative number , (R) is a Banach space consisting o
complex valued measures z(d) on R withall (l+)z](d)<,

and (R) is a Banach space of all Fourier transforms of (R), i.e. f(x)

=[ exp {i. x}z(d), Z e (R), and we defie as

is bounded and uniformly continuous, and sup]f(x)f]o.
Put R+(0, ), and ,2I’(R+,R) denotes a set of all complex valued

measures Z(t, riD, t e R+, such that (i) Z e (R) for each t e R+, and (ii)

]]z(t, .)--Z(s, .)]0 as ts on R+. (R+, R) is a space consisting of all
Fourier transforms of (R+, R), i.e.

g(t, x)=[ exp [i. x}z(t, d), e (R+, R).

2. By a slight modification of the argument in [2], we get:
Proposition 1. Assume that (i) f and B’s on (1) are in (R), and

(ii) X=BoRe p. Then (1)possesses a unique classical solution u such
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that tu, u e (R/, R) for la]g2q.
On the other hand, for a homogeneous parabolic equation

(3) tv--Av-,l=qB(x)3av, tO, x R v(O, x)- f(x),
we know the following result (see [2, 3]):

Proposition 2. Under the hypotheses in Proposition 1, (3) possesses
a unique wide sense solution v, and lim ]v(t, .)-c]]0=0 for a constantc.

The solution u(t, x) of (1) is not necessarily finite, when t tends infinity.
For instance, if f(x)=c for a non zero constant c, then u(t,x)=ct, and

lul as to.
Therefore, we introduce a compensated solution (t, x) instead of u

itself"
X( 4 ) (t, x)-u(t, x)-E,,_ a u(t, o).

Our assertion in this paper is the following.
Theorem. Under the hypotheses in Proposition 1, as to, (t,x)

converges to a classical solution of (2) uniformly on compact sets, where
is a constant given in Proposition 2.

Corollary. If the measure corresponding to. f is absolutely con-
tinuous in the Lebesgue measure, i.e.

f(x) =.[ exp {i. x}f()d; /or f e L(R),

then cz in Proposition 2 and Theorem is zero... We denote by (dS) and ,(d), a]=2q, the measures correspond-
ing to f and B’s, respectively. Define

<y> (Ei= yi)/a for y e R,
H(1)=5 and H(])5+()+...+(-) for ]2.

Let u be the solution of (1) given in Proposition 1, and let v be that of (3)

in Proposition 2, then u(t, x)=.[: v(s, x)ds. As in [2], [3], we can write

where, with the convention ot,

x(=(iN(l’ ex{-o()’(--} ex
4. Using (g) and (6), we shall prove the theorem and the corollary in

the following four steps.
Step 1. irst we take a sequence {f}, re=l, 2, ., in q(R) such

that If--f( I10 as m. By Proposition 1, we have a classical solution
U() Of
(7) 3tu()=Au()+=qBu()+f(); u()(0, x) 0.
{u()} converges to u, and 33u() are in (R+,R) for al2q, since
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e 2q(R). We define () as (4) with u() in the place of u.
Step 2. We denote by ff)e tlq(R) the corresponding measure to

f(), and define I()(t, x a), ., a)) as (6) with Z) in the place of Zy. Put
i()(,X; a(b a(n)= I()(, X a) a())

x..I()(t O;a() ...,
and this makes sense, because #) e iq(R). Noticing that ]y}(y)q or
]a=2q, we get

.: ds sup, ,)(s, x a)

<C(1+K)

where C is a positive constant depending only on q and d. Put
=l]Bl]o/Re p, then (4) through (6) derive

Re p(1-- 8)
Now ()(t, x), together with the special derivatives up to the order 2q,

converges to a certain function <2)(x) uniformly on compact sets as
because

sup I()(T, x)-a()(T’, x)

JT

on which (8) implies that the right hand side vanishes as T, T’.
Step . We make a similar calculation as in Step 2, and get

+K)( 9 ) sup3()($, x)--3(t, x)]

for [/?[<=2q. In addition, we also have

(10) sup,>0 ,u()(t, )-u(t, )11o

Since 8u=v, (10) and Proposition 2 yield

Re p(1 0)

C f>-fllo
Reo(1-O)

(11) lim,_ IIO,u()(t, .)--cll0=0 for a constant c.
Noticing that Ozg()=Ou() for I/[=2q, we let t, m-+oo on (7). Then the
theorem follows from a combination of the conclusion at Step 2 with (9)
and (11).

Step 4. As in [3], the hypothesis on the corollary implies that c+/-=0
on Proposition 2, and the proof is completed.
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