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1o Let X be a projective smooth scheme over a complete discrete
valuation ring A o2 mixed characteristics (0, p). In [2], Fontaine and
Messing studied the relation between the p-adic etale cohomology o the
generic fiber H(X)-H(X(R), Z) ( is an algebraic closure o2 ]) and the
crystalline cohomology of the special fiber H(X). In this article, we
consider not Gal(/v)-representation H(X), but H(X) itsel and study
this cohomology group by using the syntomic cohomology introduced in [2].
Detailed studies containing the complete proof will appear elsewhere.

We will use the 2ollowing notation" X is a projective, smooth and geo-
metrically connected scheme over A of dimension d as above, and Y-X
(resp. X) is the special fiber (resp. the generic fiber), and i" YX (resp.
]" X--X) is the canonical morphism. We assume that the residue field F
of A has a finite p-base of order g (i.e. [F" F]=p0.

Fontaine and Messing [2] defined the syntomic siteX and a shea
S on Xn in order to link the etale cohomology to De Rham cohomology.
This shea2 S is regarded as an "ideal" etale shea2 ZipS(r) on X. Namely,
the group H(X, S) is expected to play a role o ,,rzt: Z/p(r))" which
cannot be defined directly. In [2], a global cohomology H(X,Zp) was
studied under the assumption e=ord(p)=l. Our aim in this paper is a
local study o2 p-adie etale vanishing cycles i*R],Z/p%r) when e may not
be 1. Put (r)=i*Rz.S e D(Y,) as in [3] where z"XXis the canoni-
cal morphism. Fontaine and Messing defined a morphism S--.i’*]’.Z/p(r)
(where ]’" X,-+X,vn_,, i’" XvXv_**) in [2] 5, which induces. 3(r)
-.i*Rj.Z/p(r). We study the difference between q(r) and i*Rj.Z/p(r).

Theorem. If r <p--1, there exists a distinguished triangle
(r) >rri*R].Z/p(r) "W9o [-r].

r-1where W[2r,o is the logarithmic Hodge-Witt sheaf. In particular, if
r >_ d(--- dim X)+g(= ord [F" F]), we have a long exact sequence

r-1>Hq(Xsvn, S) >Hq(X, ,t, Z/p(r)) ;Hq-(Y**, W9. o) >
r-1H l(Xsyn, S) >Hq+’(X ,t; Zp(r)) >Hq-r +’(Yet, WnQy o) >.

In the case e=ord (p)=l and r>_d+g, considering
3(r)DR(XZ/PO[-- 1]

(DR(T) means the De Rham complex 9"r/z), we have
Corollary 1. Suppose that ea=orda (p)=land d+gr<p--1. Then,
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we have a long exact sequence
r-1>Hq-(X(R)Z/P) >Hq(X, t, ZIps(r)) >Hq-(Y, W[2r o) >"’.

Corollary 2. Suppose that e--1 and the residue field F of A is finite
and d<p-1. Then, we have a long exact sequence

q-1Hq(Y Z/p) )Sq(X, Z/p) .Hv(Y/ W) ....
where W W(F) and Hru(Y/W) is the crystalline cohomology of Y

This can be seen from Corollary 1 by considering the duality. This
Corollary 2 gives another proof of the following result [4] Prop. 7 in the
case e 1.

Corollary 3. Every abelian etale covering of Xv comes from some
abelian etale covering of Y and some abelian extension of .

This follows, from corollary 2 immediately. In fact, since H (Spec F,
z/pn)=O, We have a diagram of exact sequences

et0 )H(Yt, ZIp) )H(X, ZIp) .Hr(Y)

0 >H(Spec F, Z/p) .Het( Z/p) .H(F/W)=WO.
Therefore, the following is surjective. H(Y, Z/p)H(, Z/pn)
H(X,Z/p). Q.E.D.

Remark. The author gave an explicit definition of the homomorphism
H(, Z/p)W(F) in a general situation (F is arbitrary) [5] for a henselian
discrete valuation field with e= 1.

2. We review the description of (r) in [3]. We take a complete
discrete valuation ring AocA such that eo= 1 and the residue field of A0 is
isomorphic to F, Ao/pF. (The existence of such a ring follows from [0]
IX 2 Th. 1.) Furthermore, take a closed immersion XZ over A0 where
Z is smooth over A0 and has a Frobenius endomorphism f, which means
f mod p is the absolute Frobenius of ZZ/p. Denote X=XZ/p and

Z=ZZ/p for nl, and let D=Dx(Z) be the PD. envelope and Jg be
the ideal of D corresponding to X and rr its r-th divided power for r> 1Dn

For r0, -r is defined to be We define. by the complex of sheavesDn Dn

on Y

Assume r p--1. For a Frobenius morphism f of Z, f" gr+gC0: is
defined by "p-:f". Then, the complex 3(r) is isomorphic to the mapping
fiber of f 1"0 Explicitly, 3(r) is as follows.Dn

(2.1) )(]2-@9)(.@9-z., >
(x,y) - (dx, (f--l)(x)-dy).

Note that this complex is independent of the choice of Z and f in D(Yt).. For the proof of Theorem, since q(3(r))=0 for qr, it suffices
to show that n(r)i*R].Z/p(r) induces an isomorphism
(3.1) q(n(r)) )i*Rq],Z/p(r) if q<r<p--1
and an exact sequence
(3.2) 0 )q((q)) >i*Rq],z/p(q) )W95 0.
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Put M=i*R].Z/p(q) and denote by UM the s.ubsheaf of M gener-
ated locally by {a, ., a} with a, ., a e i*(C)*x where {a, ., a} means the
"symbol" ([1] 1). In [1], an exact sequence O---UM--.M--Wt-o--.O
was obtained. The exact sequence (3.2) is a consequence of an isomorphism
(3.3) 5(($(q)) UM.
In order to prove (3.1) and (3.3), by a standard argument, we may assume
n=l.

4. In this section, in order to prove (3.1) and (3.3), we study the struc-
ture of ((r)) for qrp-1. Our aim is to define some complexes
gr*(r) whose cohomology groups (gr*8(r)) give subquotients of (8(r))
and to compute these cohomology groups (gr*$(r)).

Since our problem to prove (3.1) and (3.3) is local, we may assume X
is a projective space P. In the following, we will use the explicit descrip-
tion of $(r) (2.1) and the same notation as in 2. Take A0 such that eo= 1
and A/Ao is totally ramified and take a prime element of A. Let f(T)
e A0[T] be the monic minimal polynomial of over A0. Take Z=Po[T]
and define a closed immersion XZ by f(T), and define a Frobenius f of Z
such that (T)= T. A filtration of ((r)) is defined by using these Z
and T. We need some more notation. For h e Q and an ideal I of G,,
TH is an ideal generated by TI such that mh and m e N. For i e N and
s e Z, an ideal J of , is defined by J (T,+J)(-+-.
For an ideal I of G,, I(9,)’ is the subsheaf of G,@9, generated by
I@9, and the elements of the form a. dlog T with a e I9.

For i>0 a complex U, is defined as follows.
(4.1)
As in the case 6 we can define ="p-f" U >U, for rp- 1.Dn

Moreover, we define gr} by an exact sequence
O.

Then, Ug(r) (resp. grOgs(r)) is defined to be the mapping fiber of f-l"
U U6 (resp. f 1" grflgrfl

The 2ollowing can be seen by an explicit calculation.
Lemma (4.2). For iO and qO, (U+’(r))o(U(r)) is in-

]ective.
By this lemma, we can regard (U(r)) as a filtration of (3(r)).

Put L(r) ((r)), UL(r)=(U(r)), and griLl(r)= UL(r) / U L().
We shall calculate griLl(r). By Lemma (4.2), we have griLl(r)=
(gr(r)).

Proposition (4.). Suppose Oqrp-1 and iO, and put e=e.
1) If iep(r--q)/(p-1) or iep(r--q+l)/(p-1), grL(r)=O.
2) The case i=ep(r--q)/(p--1). (This case only occurs when e(r-q)

is divisible by p--1.)

griLl(r)=[o if q=r

3) Assume ep(r-q)/(p--1)<i<ep(r-q+l)/(p-1).
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i) If i is not divisible by p, grLq(r)=tOF1.
ii) If i is divisible by p, grLq(r)=BgBg- where Bgr=

Image(d" 9-1--9).
On the other hand, the structure of grMI is determined in [1] Cor.

(.1.4.1). The isomorphism (3.3) Lq(q)- UMq is. verified by comparing
grLq(q) with grMI. (The compatibility of the symbol maps. from Milnor
K-sheaf to Lq(q) ([3] I 3) and to Mq ([1] 1) shows that the map Lq(q)--Mq
induces grLq(q)-grMI.)

Next, we show (3.1). Let 5 be a primitive p-th root of unity,
G= Gal(A[5]/A) be the Galois group of A[]/A, and M be the sheaf
obtained by the base change Spec A[5,]--.SpecA. We have to show the
bijectivity of

Lq (r) i*Rq].z/p(r)
_
M (r q)a.

This. is. also proved by comparing the filtrations using Prop. (4.3) and the
structure theorem onM in [1]. (The above induces ULq(r)-+U-’(-q)Mq
where h=#G and e’=ep/(p--1).)

Remark. The definition of gr-complex was suggested by K. Kato.
The author gave a different proof of Theorem in his master’s, thesis, which
uses a relation between Milnor K-groups and differential modules.
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