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1. Let X be a projective smooth scheme over a complete discrete
valuation ring A of mixed characteristics (0,p). In [2], Fontaine and
Messing studied the relation between the p-adic etale cohomology of the
generic fiber H}(X,)=H}(X,®7, Z,) (7 is an algebraic closure of ») and the
crystalline cohomology of the special fiber H}, (X,). In this article, we
consider not Gal(7/y)-representation H}A(X,), but H}(X,) itself and study
this cohomology group by using the syntomic cohomology introduced in [2].
Detailed studies containing the complete proof will appear elsewhere.

We will use the following notation : X is a projective, smooth and geo-
metrically connected scheme over A of dimension d as above, and Y =X,
(resp. X,) is the special fiber (resp. the generic fiber), and ¢: Y—X (resp.
j: X,—X) is the canonical morphism. We assume that the residue field F’
of A has a finite p-base of order g (i.e. [F': F?]=p?).

Fontaine and Messing [2] defined the syntomic site X,,, and a sheaf
S; on X,,, in order to link the etale cohomology to De Rham cohomology.
This sheaf S’ is regarded as an “ideal” etale sheaf Z/p™(r) on X. Namely,
the group H(X,,,, S7) is expected to play a role of “HYX,,, Z/p"(r))” which
cannot be defined directly. In [2], a global cohomology H4X,, Z,) was
studied under the assumption e,=ord (p)=1. Our aim in this paper is a
local study of p-adic etale vanishing cycles i*Rj,Z/p™(r) when e, may not
bel. PutS,(r)=i*Rr,S;e D(Y,,) as in [8] where n: X,,,—X,, is the canoni-
cal morphism. Fontaine and Messing defined a morphism S7—#'*5,Z/p"(r)
(where j': X,,,—X,yn_cor V' Xgyn—X,pn_o) in [2] 5, which induces S,(r)
—1*Rj Z/p™(r). We study the difference between S,(r) and ¢*Rj,Z/p"(r).

Theorem. If r<p—1, there exists a distinguished triangle

Su(r)—>1, ¥R} Z| p"(r)—> W, 277, [—7].
where W, 0%, is the logarithmic Hodge-Witt sheaf. In particular, if
r>d(=dim X)+g(=ord, [F : F*]), we have a long exact sequence

—>HX,,,, S;)—>HYX, ., Z| p"(r))—>H" (Y ., W, 257)—>
H (X oy S)——>H X, o1y Z] p"0)——>H (Y o0y W, 2570 )—>

log

In the case e,=ord,(p)=1 and r>d+ ¢, considering
Su(r=DR(X®Z/p)l—1]
(DR(T) means the De Rham complex 27,,), we have

Corollary 1. Suppose that e,=ord, (p)=1and d+g<r<p—1. Then,
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we have a long exact sequence
- ——H5R(XQ®Z/ p)—HYX, .., Z| p"(1)—>H" (Y ,,, W, 25 0)—> - -

Corollary 2. Suppose that e,=1 and the residue field F of A is finite

and d<p—1. Then, we hove a long exact sequence
«o.—>HYY,, Z|p)—>HX,,, Z|p")—>H (Y | W, )—>- - -.

where W,=W, (F) and H%, (Y |W,) is the crystalline cohomology of Y.

This can be seen from Corollary 1 by considering the duality. This
Corollary 2 gives another proof of the following result [4] Prop. 7 in the
case e,=1.

Corollary 3. Ewery abelian etale covering of X, comes from some
abelian etale covering of Y and some abelian extension of .

This follows from corollary 2 immediately. In fact, since H? (Spec F',,,
Z/p")=0, we have a diagram of exact sequences

0_)H1(Yet’ Z/pn)—)Hl(va ety Z/pn)—_‘)ngys(Y)

0—>H.(Spec F, Z|p")—>H,(y, Z| p")—>H},,(F | W,)=W,—>0.
Therefore, the following is surjective. H'(Y,Z/p“®H'(yp, Z]/p")—
H'X,, Z|p™). Q.E.D.

Remark. The author gave an explicit definition of the homomorphism
H!(y, Z|p")—W (F) in a general situation (F' is arbitrary) [5] for a henselian
discrete valuation field » with e,=1.

2. We review the description of S,(r) in [8]. We take a complete
discrete valuation ring A,C A such that e,,=1 and the residue field of 4, is
isomorphic to F', A,/p=F. (The existence of such a ring follows from [0]
IX §2 Th.1.) Furthermore, take a closed immersion X—Z over A, where
Z is smooth over 4, and has a Frobenius endomorphism f, which means
f mod p is the absolute Frobenius of ZQZ/p. Denote X,=XQZ/p" and
7Z,=ZQ®Z|p" for n>1, and let D, =D, (Z,) be the PD. envelope and J,, be
the ideal of D, corresponding to X, and J%7 its r-th divided power for »>1.
For r<0, J%] is defined to be ©,,. We define 4% by the complex of sheaves
onY,;

J%,],—"—)J%,,—1]®op,, len“‘%J%,,_ﬂ@op,, 0y, —>- -
Assume r<p—1. For a Frobenius morphism f of Z, f,: 451— 45! is
defined by “p~"f”. Then, the complex S,(r) is isomorphic to the mapping
fiber of f,—1: 47145, Explicitly, S,(r) is as follows.
2.1 (YR80, )D(0,,895 ) —> - - -
(x,y) —> (dz, (£, —1)(x)—dy).
Note that this complex is independent of the choice of Z and f in D(Y.,).

3. For the proof of Theorem, since H%S,(r))=0 for ¢>r, it suffices
to show that S,(r)—i*Rj.Z/p"(r) induces an isomorphism
8.1) HUS,(r)—=>i*R, Z] p™(r) if g<r<p-—-1
and an exact sequence
3.2) 0—>H(S, () —>1*Rj Z| p(Q)—> W 0% 1, ,—>O0.
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Put M¢=1*R%j,Z/p"(q) and denote by U°M? the subsheaf of MZ gener-
ated locally by {a,, - - -, a,} with a,, - - -, a, € ?*O% where {a,, - - -, a,} means the
“symbol” ([11§1). In [1], an exact sequence 0—U°Mi—Mi—W Q%7 ,—0
was obtained. The exact sequence (3.2) is a consequence of an isomorphism
3.3) HUS,(@)—=UM:.

In order to prove (3.1) and (8.8), by a standard argument, we may assume
n=1,

4. Inthis section, in order to prove (3.1) and (3.3), we study the struec-
ture of 4(4S,(r)) for g<r<p—1. Our aim is to define some complexes
g1 S,(r) whose cohomology groups 4% (grS,(r)) give subquotients of 4 4S,(r))
and to compute these cohomology groups H(gr:S,(r)).

Since our problem to prove (3.1) and (3.3) is local, we may assume X
is a projective space P7. Inthe following, we will use the explicit descrip-
tion of S,(r) (2.1) and the same notation as in 2. Take 4, such that e,,=1
and A/A, is totally ramified and take a prime element = of A. Let f(T)
€ A[T] be the monic minimal polynomial of = over A,. Take Z=P7[T]
and define a closed immersion X—Z by f(T), and define a Frobenius f of Z
such that £f(T)=T>. A filtration of 44S,(r)) is defined by using these Z
and 7. We need some more notation. For ke Q and an ideal I of O,,,
T*I is an ideal generated by T™I such that m>h and me N. For ie N and
se Z, an ideal Ji*1 of ©,, is defined by J=(T"Op,+JE) N (T~ D514 J@I),
For an ideal I of Op,, IQ(2%,) is the subsheaf of O, &®02%, generated by
I®QY, and the elements of the form a-dlog T with a € IQR%;".

For i>0, a complex U’ 4%] is defined as follows.

4.1) U 451 J——J Q2% —>J 7 HR(2% ) —> - - -
As in the case 4%, we can define f,=“p="f": U' §31l—>U' 4% for r<p—1.
Moreover, we define gr* 4%1 by an exact sequence

0—> U ¢gYl—> U §5l—>grt g5 1—>0.
Then, U!S,(r) (resp. 97'S,(r)) is defined to be the mapping fiber of f,—1:
U 45— U 451 (resp. £,—1: gr' 451—>gr' 45)).

The following can be seen by an explicit calculation.

Lemma (4.2). For >0 and ¢>0, HY(U*'S,(#)—>H(U'S,(r)) is in-
jective.

By this lemma, we can regard H«U:S,(r)) as a filtration of H%S,(r)).
Put Li(r) = H4S,(r), U'L{(r)=HA(U'S\(r), and gr'Li(r)=U*L{(r)/ U* *'Li(r).
We shall calculate g¢gr'Li(r). By Lemma (4.2), we have gr'Li(r)=
HU(grtSi(r).

Proposition (4.3). Suppose 0<qg<r<p—1 and i>0, and put e=e,.

1) If i<ep(r—q)/(p—1) or izep(r—q+1)/(p—1), gr'Li(r)=0.

2) The case i=ep(r—q)/(p—1). (This case only occurs when e(r—q)
18 divisible by p—1.)

%y U q=r

% —
rUO={g “eoun, it a<r
3) Assume ep(r—q)/(p—1)<i<ep(r—q+1)/(p—1).
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i) If i is not divisible by p, gr*Li(r)= 2%,

il) If © is divisible by p, 9gr'Li(r)=BR{PBRY' where BQR,=
Image (d: Q5 *—0%).

On the other hand, the structure of gr'M¢ is determined in [1] Cor.
(1.4.1). The isomorphism (3.3) L{(q) = U°M{ is verified by comparing
griL¥(q) with gr'M¢. (The compatibility of the symbol maps from Milnor
K-sheaf to L#(q) ([81 1§3) and to M? ([1] §1) shows that the map Li(q)—M?
induces gr'L#(q)—gr'M¢.)

Next, we show (3.1). Let {, be a primitive p-th root of unity,
G=Gal(Al¢,]/A) be the Galois group of A[{,]/A, and M{ be the sheaf
obtained by the base change Spec A[{,]—Spec A. We have to show the
bijectivity of

Li(r)—>i*Rj Z| p(r) = M {(r— q)°.
This is also proved by comparing the filtrations using Prop. (4.3) and the
structure theorem on M¢in [1]. (The above induces U'L{(r)—U*-¢' - 0r [ ¢
where h=#G and ¢’=e p/(p—1).)

Remark. The definition of gr-complex was suggested by K. Kato.
The author gave a different proof of Theorem in his master’s thesis, which
uses a relation between Milnor K-groups and differential modules.
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