76. A Note on p-adic Etale Cohomology

By Masato Kurihara

Department of Mathematics, Faculty of Science, University of Tokyo

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 14, 1987)

1. Let X be a projective smooth scheme over a complete discrete valuation ring A of mixed characteristics (0,p). In [2], Fontaine and Messing studied the relation between the p-adic etale cohomology of the generic fiber $H^*_{et}(X_{\bar{\eta}}) = H^*_{et}(X_{\bar{\eta}} \otimes \bar{\eta}, Z_p)$ ($\bar{\eta}$ is an algebraic closure of η) and the crystalline cohomology of the special fiber $H^*_{erys}(X_s)$. In this article, we consider not $Gal(\bar{\eta}/\eta)$ -representation $H^*_{et}(X_{\bar{\eta}})$, but $H^*_{et}(X_{\bar{\eta}})$ itself and study this cohomology group by using the syntomic cohomology introduced in [2]. Detailed studies containing the complete proof will appear elsewhere.

We will use the following notation: X is a projective, smooth and geometrically connected scheme over A of dimension d as above, and $Y = X_s$ (resp. X_{η}) is the special fiber (resp. the generic fiber), and $i: Y \to X$ (resp. $j: X_{\eta} \to X$) is the canonical morphism. We assume that the residue field F of A has a finite p-base of order g (i.e. $[F:F^p] = p^q$).

Fontaine and Messing [2] defined the syntomic site X_{syn} and a sheaf S_n^r on X_{syn} in order to link the etale cohomology to De Rham cohomology. This sheaf S_n^r is regarded as an "ideal" etale sheaf $Z/p^n(r)$ on X. Namely, the group $H^q(X_{syn}, S_n^r)$ is expected to play a role of " $H^q(X_{et}, Z/p^n(r))$ " which cannot be defined directly. In [2], a global cohomology $H^q(X_\eta, Z_p)$ was studied under the assumption $e_A = \operatorname{ord}_A(p) = 1$. Our aim in this paper is a local study of p-adic etale vanishing cycles $i*Rj_*Z/p^n(r)$ when e_A may not be 1. Put $S_n(r) = i*R\pi_*S_n^r \in D(Y_{et})$ as in [3] where $\pi: X_{syn} \to X_{et}$ is the canonical morphism. Fontaine and Messing defined a morphism $S_n^r \to i'*j'_*Z/p^n(r)$ (where $j': X_{\etaet} \to X_{syn-et}$, $i': X_{syn} \to X_{syn-et}$) in [2] 5, which induces $S_n(r) \to i*Rj_*Z/p^n(r)$. We study the difference between $S_n(r)$ and $i*Rj_*Z/p^n(r)$.

Theorem. If r < p-1, there exists a distinguished triangle $S_n(r) \longrightarrow \tau_{\leq r} i^* R j_* \mathbb{Z}/p^n(r) \longrightarrow W_n \Omega_{Y lo}^{r-1} [-r]$.

where $W_n \Omega_{Y \log}^{r-1}$ is the logarithmic Hodge-Witt sheaf. In particular, if $r \ge d(=\dim X) + g(=\operatorname{ord}_n[F:F^p])$, we have a long exact sequence

$$\longrightarrow H^{q}(X_{syn}, S_n^r) \longrightarrow H^{q}(X_{\eta et}, \mathbb{Z}/p^n(r)) \longrightarrow H^{q-r}(Y_{et}, W_n \Omega_{Y \log}^{r-1}) \longrightarrow H^{q+1}(X_{syn}, S_n^r) \longrightarrow H^{q+1}(X_{net}, \mathbb{Z}/p^n(r)) \longrightarrow H^{q-r+1}(Y_{et}, W_n \Omega_{Y \log}^{r-1}) \longrightarrow .$$

In the case $e_A = ord_A(p) = 1$ and $r \ge d + g$, considering $S_n(r) \simeq DR(X \otimes \mathbb{Z}/p^n)[-1]$

(DR(T) means the De Rham complex $\Omega_{T/Z}^{\bullet}$), we have

Corollary 1. Suppose that $e_A = ord_A(p) = 1$ and $d+g \le r < p-1$. Then,

we have a long exact sequence

$$\cdots \longrightarrow H_{DR}^{q-1}(X \otimes \mathbb{Z}/p^n) \longrightarrow H^q(X_{\eta et}, \mathbb{Z}/p^n(r)) \longrightarrow H^{q-r}(Y_{et}, W_n \Omega_{Y log}^{r-1}) \longrightarrow \cdots$$

Corollary 2. Suppose that $e_A=1$ and the residue field F of A is finite and d < p-1. Then, we have a long exact sequence

$$\cdots \longrightarrow H^q(Y_{et}, \mathbb{Z}/p^n) \longrightarrow H^q(X_{\eta et}, \mathbb{Z}/p^n) \longrightarrow H^{q-1}_{crys}(Y/W_n) \longrightarrow \cdots$$

where $W_n = W_n(F)$ and $H^*_{crys}(Y/W_n)$ is the crystalline cohomology of Y .

This can be seen from Corollary 1 by considering the duality. This Corollary 2 gives another proof of the following result [4] Prop. 7 in the case $e_4=1$.

Corollary 3. Every abelian etale covering of X_{η} comes from some abelian etale covering of Y and some abelian extension of η .

This follows from corollary 2 immediately. In fact, since H^2 (Spec F_{et} , \mathbb{Z}/p^n)=0, we have a diagram of exact sequences

$$0 \longrightarrow H^1(Y_{et}, \mathbb{Z}/p^n) \longrightarrow H^1(X_{\eta \ et}, \mathbb{Z}/p^n) \longrightarrow H^0_{crys}(Y)$$

$$\downarrow \qquad \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$0 \longrightarrow H^1_{et}(Spec \ F, \mathbb{Z}/p^n) \longrightarrow H^1_{et}(\eta, \mathbb{Z}/p^n) \longrightarrow H^0_{crys}(F/W_n) = W_n \longrightarrow 0.$$
Therefore, the following is surjective. $H^1(Y, \mathbb{Z}/p^n) \oplus H^1(\eta, \mathbb{Z}/p^n) \rightarrow H^1(X_n, \mathbb{Z}/p^n).$ Q.E.D.

Remark. The author gave an explicit definition of the homomorphism $H^1_{el}(\eta, \mathbb{Z}/p^n) \to W_n(F)$ in a general situation (F is arbitrary) [5] for a henselian discrete valuation field η with $e_A=1$.

2. We review the description of $S_n(r)$ in [3]. We take a complete discrete valuation ring $A_0 \subset A$ such that $e_{A_0} = 1$ and the residue field of A_0 is isomorphic to F, $A_0/p \cong F$. (The existence of such a ring follows from [0] IX §2 Th. 1.) Furthermore, take a closed immersion $X \to Z$ over A_0 where Z is smooth over A_0 and has a Frobenius endomorphism f, which means f mod p is the absolute Frobenius of $Z \otimes Z/p$. Denote $X_n = X \otimes Z/p^n$ and $Z_n = Z \otimes Z/p^n$ for $n \ge 1$, and let $D_n = D_{X_n}(Z_n)$ be the PD. envelope and J_{D_n} be the ideal of D_n corresponding to X_n , and $J_{D_n}^{[r]}$ its r-th divided power for $r \ge 1$. For $r \le 0$, $J_{D_n}^{[r]}$ is defined to be \mathcal{O}_{D_n} . We define $\mathcal{J}_{D_n}^{[r]}$ by the complex of sheaves on Y_{el} ;

$$J_{D_n}^{[r]} {\longrightarrow} J_{D_n}^{[r-1]} {\bigotimes}_{\mathcal{O}_{D_n}} \varOmega_{Z_n}^1 {\longrightarrow} J_{D_n}^{[r-2]} {\bigotimes}_{\mathcal{O}_{D_n}} \varOmega_{Z_n}^2 {\longrightarrow} \cdot \cdot \cdot .$$

Assume r < p-1. For a Frobenius morphism f of Z, $f_r : \mathcal{J}_{D_n}^{[r]} \to \mathcal{J}_{D_n}^{[0]}$ is defined by " $p^{-r}f$ ". Then, the complex $\mathcal{S}_n(r)$ is isomorphic to the mapping fiber of $f_r-1: \mathcal{J}_{D_n}^{[r]} \to \mathcal{J}_{D_n}^{[0]}$. Explicitly, $\mathcal{S}_n(r)$ is as follows.

$$(2.1) \cdots \longrightarrow (J_{D_n}^{\lceil r-i \rceil} \otimes \Omega_{Z_n}^i) \oplus (\mathcal{O}_{D_n} \otimes \Omega_{Z_n}^{i-1}) \longrightarrow \cdots$$

$$(x,y) \longmapsto (dx, (f_r-1)(x)-dy).$$

Note that this complex is independent of the choice of Z and f in $D(Y_{et})$.

3. For the proof of Theorem, since $\mathcal{H}^q(\mathcal{S}_n(r)) = 0$ for q > r, it suffices to show that $\mathcal{S}_n(r) \to i^*Rj_*\mathbf{Z}/p^n(r)$ induces an isomorphism

$$(3.1) \hspace{1cm} \mathcal{H}^{q}(\mathcal{S}_{n}(r)) \xrightarrow{\sim} i * R^{q} j_{*} \mathbf{Z}/p^{n}(r) \hspace{1cm} \text{if} \hspace{1cm} q < r < p-1$$

and an exact sequence (3.2) $0 \longrightarrow \mathcal{H}^q(\mathcal{S}_n(q)) \longrightarrow i^*R^q j_* \mathbb{Z}/p^n(q) \longrightarrow W_n \mathcal{Q}_{Y log}^{q-1} \longrightarrow 0.$

Put $M_n^q = i*R^q j_* \mathbb{Z}/p^n(q)$ and denote by $U^0 M_n^q$ the subsheaf of M_n^q generated locally by $\{a_1, \cdots, a_q\}$ with $a_1, \cdots, a_q \in i*\mathcal{O}_X^q$ where $\{a_1, \cdots, a_q\}$ means the "symbol" ([1] § 1). In [1], an exact sequence $0 \rightarrow U^0 M_n^q \rightarrow M_n^q \rightarrow W_n \mathcal{Q}_{Y log}^{q-1} \rightarrow 0$ was obtained. The exact sequence (3.2) is a consequence of an isomorphism (3.3) $\mathcal{H}^q(\mathcal{S}_n(q)) \stackrel{\sim}{\longrightarrow} U^0 M_n^q.$

In order to prove (3.1) and (3.3), by a standard argument, we may assume n=1.

4. In this section, in order to prove (3.1) and (3.3), we study the structure of $\mathcal{H}^q(\mathcal{S}_1(r))$ for $q \leq r < p-1$. Our aim is to define some complexes $gr^i\mathcal{S}_1(r)$ whose cohomology groups $\mathcal{H}^q(gr^i\mathcal{S}_1(r))$ give subquotients of $\mathcal{H}^q(\mathcal{S}_1(r))$ and to compute these cohomology groups $\mathcal{H}^q(gr^i\mathcal{S}_1(r))$.

Since our problem to prove (3.1) and (3.3) is local, we may assume X is a projective space P_A^m . In the following, we will use the explicit description of $\mathcal{S}_1(r)$ (2.1) and the same notation as in 2. Take A_0 such that $e_{A_0}=1$ and A/A_0 is totally ramified and take a prime element π of A. Let $f(T) \in A_0[T]$ be the monic minimal polynomial of π over A_0 . Take $Z = P_{A_0}^m[T]$ and define a closed immersion $X \to Z$ by f(T), and define a Frobenius f of Z such that $f(T) = T^p$. A filtration of $\mathcal{H}^q(\mathcal{S}_1(r))$ is defined by using these Z and T. We need some more notation. For $h \in Q$ and an ideal I of \mathcal{O}_{D_1} , T^hI is an ideal generated by T^mI such that $m \geq h$ and $m \in N$. For $i \in N$ and $s \in Z$, an ideal $J_i^{[s]}$ of \mathcal{O}_{D_1} is defined by $J_i^{[s]} = (T^i \mathcal{O}_{D_1} + J_{D_1}^{[p]}) \cap (T^{(ip-1)}J_{D_1}^{[s]} + J_{D_1}^{[p]})$. For an ideal I of \mathcal{O}_{D_1} , $I \otimes (\mathcal{Q}_{Z_1}^q)'$ is the subsheaf of $\mathcal{O}_{D_1} \otimes \mathcal{Q}_{Z_1}^q$ generated by $I \otimes \mathcal{Q}_{Z_1}^q$ and the elements of the form $a \cdot dlog T$ with $a \in I \otimes \mathcal{Q}_{Z_1}^{q-1}$.

For $i \ge 0$, a complex $U^i \mathcal{J}_{D_i}^{[r]}$ is defined as follows.

$$(4.1) U^{i}\mathcal{J}_{D_{1}}^{[r]} \colon J_{i}^{[r]} \longrightarrow J_{i}^{[r-1]} \otimes (\Omega_{Z_{1}}^{1})' \longrightarrow J_{i}^{[r-2]} \otimes (\Omega_{Z_{1}}^{2})' \longrightarrow \cdots$$

As in the case $\mathcal{J}_{D_n}^{[r]}$, we can define $f_r = "p^{-r}f" : U^i \mathcal{J}_{D_1}^{[r]} \longrightarrow U^i \mathcal{J}_{D_1}^{[0]}$ for r < p-1. Moreover, we define $gr^i \mathcal{J}_{D_1}^{[r]}$ by an exact sequence

$$0 \longrightarrow U^{i+1}\mathcal{J}_{D_1}^{[r]} \longrightarrow U^i\mathcal{J}_{D_1}^{[r]} \longrightarrow gr^i\mathcal{J}_{D_1}^{[r]} \longrightarrow 0.$$

Then, $U^i \mathcal{S}_1(r)$ (resp. $gr^i \mathcal{S}_1(r)$) is defined to be the mapping fiber of f_r-1 : $U^i \mathcal{J}_{D_1}^{[r]} \longrightarrow U^i \mathcal{J}_{D_1}^{[0]}$ (resp. $f_r-1: gr^i \mathcal{J}_{D_1}^{[r]} \longrightarrow gr^i \mathcal{J}_{D_1}^{[0]}$).

The following can be seen by an explicit calculation.

Lemma (4.2). For $i \ge 0$ and $q \ge 0$, $\mathcal{H}^q(U^{i+1}S_1(r)) \to \mathcal{H}^q(U^iS_1(r))$ is injective.

By this lemma, we can regard $\mathcal{H}^q(U^i\mathcal{S}_1(r))$ as a filtration of $\mathcal{H}^q(\mathcal{S}_1(r))$. Put $L^q_1(r) = \mathcal{H}^q(\mathcal{S}_1(r))$, $U^iL^q_1(r) = \mathcal{H}^q(U^i\mathcal{S}_1(r))$, and $gr^iL^q_1(r) = U^iL^q_1(r)/U^{i+1}L^q_1(r)$. We shall calculate $gr^iL^q_1(r)$. By Lemma (4.2), we have $gr^iL^q_1(r) = \mathcal{H}^q(gr^i\mathcal{S}_1(r))$.

Proposition (4.3). Suppose $0 \le q \le r < p-1$ and $i \ge 0$, and put $e = e_A$.

- 1) If i < ep(r-q)/(p-1) or $i \ge ep(r-q+1)/(p-1)$, $gr^iL_1^q(r) = 0$.
- 2) The case i=ep(r-q)/(p-1). (This case only occurs when e(r-q) is divisible by p-1.)

3) Assume ep(r-q)/(p-1) < i < ep(r-q+1)/(p-1).

- i) If i is not divisible by p, $gr^{i}L_{1}^{q}(r) = \Omega_{r}^{q-1}$.
- ii) If i is divisible by p, $gr^iL_1^q(r) = B\Omega_Y^q \oplus B\Omega_Y^{q-1}$ where $B\Omega_Y^j = Image(d: \Omega_Y^{j-1} \rightarrow \Omega_Y^j)$.

On the other hand, the structure of $gr^iM_1^q$ is determined in [1] Cor. (1.4.1). The isomorphism (3.3) $L_1^q(q) \cong U^0M_1^q$ is verified by comparing $gr^iL_1^q(q)$ with $gr^iM_1^q$. (The compatibility of the symbol maps from Milnor K-sheaf to $L_1^q(q)$ ([3] I § 3) and to M_1^q ([1] § 1) shows that the map $L_1^q(q) \to M_1^q$ induces $gr^iL_1^q(q) \to gr^iM_1^q$.)

Next, we show (3.1). Let ζ_p be a primitive p-th root of unity, $G = Gal(A[\zeta_p]/A)$ be the Galois group of $A[\zeta_p]/A$, and \overline{M}_1^q be the sheaf obtained by the base change $Spec\ A[\zeta_p] \to Spec\ A$. We have to show the bijectivity of

$$L_1^q(r) \xrightarrow{\sim} i * R^q j_* \mathbb{Z}/p(r) \simeq \overline{M}_1^q(r-q)^q$$
.

This is also proved by comparing the filtrations using Prop. (4.3) and the structure theorem on \overline{M}_1^q in [1]. (The above induces $U^iL_1^q(r) \to U^{ih-e'(r-q)h}\overline{M}_1^q$ where $h=\sharp G$ and $e'=e_Ap/(p-1)$.)

Remark. The definition of gr-complex was suggested by K. Kato. The author gave a different proof of Theorem in his master's thesis, which uses a relation between Milnor K-groups and differential modules.

References

- [0] Bourbaki, N.: Algèbre Commutative. Chap. 8 et 9. Masson, Paris (1983).
- [1] Bloch, S. and Kato, K.: p-adic etale cohomology. Publ. Math. IHES, 63, 107-152 (1986).
- [2] Fontaine, J.-M. and Messing, W.: p-adic periods and p-adic etale cohomology, MSRI (1986) (preprint).
- [3] Kato, K.: On p-adic vanishing cycles (Application of ideas of Fontaine-Messing). Adv. Studies in Pure Math., 10, 207-251 (1987).
- [4] Kato, K. and Saito, S.: Unramified class field theory of arithmetical surfaces. Ann. of Math., 118, 241-275 (1983).
- [5] Kurihara, M.: Abelian extensions of absolutely unramified local fields with general residue fields (1987) (preprint).