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1. Introduction. Let k be an algebraic number field of finite degree
over the rational field Q. Recently, T. One introduced new arithmetical
invariants E(K/k) and E’(K/k) for a finite extension K/k. In [5], he
obtained a formula between the Euler number E(K, k) and other cohomo-
logical invariants for a finite Galois extension K/k. In [2], we obtained a
similar formula for E’(K/k). Both proofs use One’s results on the
Tamagawa number of algebraic tori, on which the formulae themselves do
not depend. The purpose of this paper is to give a direct proof of these
formulae, in response to a problem posed by T. One [6]. At the same time,
we shall get some relations between E(K/k), E’(K/k) and other arithmetical
invariants of K/k (for example, central class number, genus number etc.).

2. Let T be an algebraic torus defined over k, and K-be a Galois
splitting field of T. We denote the Galois group Gal (K/k) by G and the
character module Hem (T, G) by . 0 denotes the integral dual of .
Let T(k.), T(k)and T(k,)be the k-adelization of T, k-rational points of T
and k,-rational points of T, where p is a place of k. When p is finite, we
denote the unique maximal compact subgroup of T(k,) by T(OD. T(U,,)
denotes the group

[-[ T(O) 1-[ T(k),
p: finite p: infinite

where p runs over all the places of k. We define the class group of T by
putting

As G-modules, we have

Here

C(T) T(I&) T(]) T(U).

U:--- l-I O x FI K,
: finite : infinite

where runs over all the places of K. We note here that h(T), the class
number of the torus T, is the order of the group C(T). First, we shall
sketch a new direct proof of the equation between E(K/]) and the cohomo’
logical invariants of K/k. Consider the following exact sequence of alge-
braic tori defined over ]

( 1 ) 0 ;R)(G) >R:/(G)
N
>G >0.
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In this section, we shall denote R/(G), R/(G), G by T’, T,
Then we have :--I[G], 70=Z[G], 7’=Z, where I[G] is the augmentation
ideal of the group ring Z[G]. We denote {x e K. N:/(x)=l} by N-(1).
Then, from the cohomology sequence derived 2rom (1), we have

T’(k) - (I[G](R)K)-N-(1),
T’(k) - (I[G](R)K) N-(1) ( K,
T(U)-(I[G](R)U)O-N-(1) U.

Consider a homomorphism a’C(T’)-C(T). Then, from the act that
C(T)-K/U.K and C(T’)-N-(1)/(N-(1) f K)(N-(1) f U), it is easy to
show Coka-K/N-(1).U.K. We note here that Coka is isomorphic
to the central class group of K/k. We denote the order [Coka] by z/. On
the other hand, we have

Ker a-N-’(1) ;3 U.K/(N-(1) U)(N-(1) fK)
-0 N/K /N/O,

where O; and O are the unit groups of k and K, respectively. Hence, we
have

Theorem 1. The following sequence is exact

0 0 N/K/N/O >C(T’) ;C(T) >K/N-(1). U.K ;0.

Since each group in the sequence of the above theorem is finite, we
have the follgwing equation
( 2 ) h. [0 (N/K N/O] h/ .z/,

where h/ denotes the order [C(T’)]. It is easy to prove the following well
known result on z/

h, i(K/ k) U N
z/--

[K0" k]. [O O N/K]
where K0 is the maximal abelian extension
=[k N/K’N/K]. Therefore, rom (2), we have

3 ) E(K/k)=-- h________ i(K/k).[U "N/Ui]
h. h/ [K0" k]. [0 N/O]

ZK/t
h [0 N/K N/O]

Let g/ be the genus number of K/k, that is the order of the genus group

K/N}(k) U. From the relation between g/ and z/, we have

( 4 ) E(K/k)-- i(K/k).g/
h [0 N/K N/O]

3. In this section, we shall consider the following exact sequence of
algebraic tori defined over k
(5) 0 G: R/(G)- Rx/(G)/G ;0.

In the following, we shall denote G,R/(G),Rx/(G)/G by
respectively. Then we have

7=z, 0=Z[G], ’o’=Z[G]/zs - Z[G]/Z,
where s=,ea a. Let us consider a homomorphism/3" C(T)oC(T"). From
Hilbert Theorem 90, we see the homomorphism T(ka).---T"(ka) is surjective.
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Since T’(U)-((Z[G]/Z)(R)U)a, T’(k)-((Z[G]/Z)(R)K), we have the fol-
lowing commutative diagram with exact rows and columns

0 0 0

0 > U- UK ((Z[G]/Z)(R)U) HI(G, UK)---O

(6) 0---+ k >K ((Z[G]/Z)(R)K) >0

O- ; I ; I ((Z[G]/Z)(R)I) ;0

0 0
where Ii is the ideal group of K.

Since g(K)--((Z[G]/Z)(R)K), we have
Ker fl.-{x e K g(x) e ((Z[G]/Z)(R)U)O.((Z[G]/Z)(R)K)o}/UK.K

={x e K ]g(x) e ((Z[G]/Z)(R)UK)}.K/U.K.
From the diagram (6), we have

g(x) e ((Z[G]/Z)(R)U)@::y(xU)=O in ((Z[G]/Z)(R)I)

=x e U or every a e G.
Hence we have

Ker-{xeKlx-le U or every ae G}.K/U/U.K/U
-I.P/PI/P,

where P is the principal ideal group of K. I.P/P is isomorphic to the
group of ideal classes represented by ambiguous ideals in K/k. Then it
is easy to show the ollowing equation

[Ker fl]= [I P]= [H(G’ U)]h
[H’(G, 0)]

Theorem 2. The following sequence is exact

0 >I/P ;C(T) C(T’) 70.
Corollary. Let a/ denote the order of the group I.P/P. Then

h/ is the class number of thewe have the equation h h/ a/, where
torus R/(G) /G.

From the corollary, we have the equality

E’(K/k) h a/ [H(G, U)]
h’/, h h [Hi(G, 0)]

Remark. Pro. T. Ono has kindly informed the author o similar
results by Mr. R. Sasaki obtained by another method. The author has
lso received a direct communication from Prof. V. E. Voskresenskii that
he had got some results on the class number of algebraic tori, related
implicitly to the author’s results.
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