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1. Introduction. Our primary interest in this note is the mixed
problem for the first order quasi-linear hyperbolic systems with character-
istic boundary. The case where the boundary matrix is nonsingular has
been investigated by several authors, but we do not enter into detail here.
.(See [5] and the references therein.) The characteristic boundary value
problem was treated by Tsuji [6], Majda-Osher [1], Ohkubo [2] and Rauch
[4]. Recently, Ohkubo [3] gave an improved version of his sufficient condi-
tion for the ull regularity of solutions to the linear mixed problem and
established a local existence, theorem 2or the quasi-linear mixed problem.
Our purpose in this paper is to present another method 2or solving the
quasi-linear mixed problem. To do this, we formulate a new sufficient
cndition which seems to be somewhat weaker than Ohkubo’s one.

2. Assumptions and main result. Let 9 be. a bounded domain in R
with smooth, compact boundary 39. We study the 2ollowing mixed
problem.

( 1 ) A(t, x, u)ut +, A(t, x, u)u=f(t, x, u) in [0, T] /2,
j=l

( 1 ). M(x)u=O on [0, T]
( 1 )3 u(O, x)=Uo(X) for x e 9.
Here the unknown u-u(t, x) is a vector-valued functionvith m components
and takes values in a convex open set (C)R, A and A, ]--1,..., n, are
smoothly varying real mm matrices defined on [0, T]f2, and f is a
smooth function on [0, T]/2 ) with values in R. M is a real rm
matrix (r m) depending smoothly on x e 32. It is assumed that M is of
full rank for x e 39.

Condition 1o A(t, x, u) is real symmetric and positive definite for
(t, x, u) e [0, T] (C). A(t, x, u), ].= 1, ., n, are real symmetric for
(t,x,u)e [0, T].

We write O--O/Ox, ]--1, ., n, and put -(3, ., n). For a first
order differential operator A(t, x, u )--’)= A(t, x, u)3, we denote its
symbol by A(t, x, u )= Y-]=x A(t, x, u), where =(, ..., ) e R. Let
,(x) be the unit outward normal to 32 at x. The null space o M(x) is the
boundary subspace and is denoted by (M(x)).
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Condition 2. (M(x)) is the maximally nonnegative subspace of the
boundary matrix A(t, x, u v(x)) for (t, x) e [0, T] X and u e (M(x)) _).

We introduce here the notion of the linked system of (1). Let us
consider a system of the form

( 2 ) A(t, x, u)w+ A(t, x, u)w= h(t, x),

where A and A, ]= 1, ..., n, are smoothly varying real mm matrices.
Definition. Suppose that A and A, ]=1, ...,n, satisfy Condition 1

with A aad A replaced by A and A, respectively. Suppose, furthermore,
that the boundary matrix A(t, x, u ,(x)) is nonnegative on R for (t, x) e
[0, T]39 and u e (M(x))_). Then (2) is called a linked system of (1)
i there exists a first order differential operator

S(t, x, u; x)= S(t, x, u)
j=l

satisfying
( 3 ) S(t, x, u; )A(t, x, u; )A(t, x, u)-A(t, x, u; )A(t, x, u)-S(t, x, u )
or (t,x,u) e[0, T](C) and eR. S(t,x,u;3) is called a linkage
operator corresponding to the linked system (2).

The relation (3) may be rewritten as
( 4 ) S(t, x, u )A(t, x, u)= A(t, x, u)S(t, x, u; ),
( 4 ) S(t, x, u; )A(t, x, u )= A(t, x, u )S(t, x, u ),
where (4) is understood as the definition of S(t, x, u; ). S(t, x, u; ) is a
first order differential operator and is called the modified linkage operator
attached to S(t, x, u; ).

Condition 3. There exist a positive integer N and an N-tuple of liked
systems of (1) with the following properties" Let (t, x)e [0, T]39 and
let u e (M(x)) (. Let S (t, x, u ) be the modified linkage operator
attached to a suitably chosen linkage operator corresponding to the i-th
linked system. Then, if A(t, x, u ,(x))v=0 and S (t, x, u ,(x))v=0, i=
1, ...,N, for v e R, we have. v=0.

Let H(tg) be the usual Sobolev space (n 9) of rder l, with the norm

]]’]1. We. denote by L([0, T] ;H(9)) the space of all unctions u=u(t, x)
such that 3u, O<i<k, are essentially bounded, strongly measurable func-
tions on [0, T] taking values in H(9). We set

X(T,/2)= ( L([0, T] H- (/2)),
(5) --o

Illulll,= sup IIlu(t)lll, Illu(t)lll=E u(t) _.
OtT k=O

Our main result is then stated as follows.
Theorem 1. Assume Conditions 1,2, and 3. Let s>_[n/2]+2. Suppose

that Uo e H(9), Uo(X) e _) for x e and that Uo satisfies the compatibility
conditions up to order s-1. Then there exists a positive constant To such
that the problem (1). has a unique solution u e X(To, 9) satisfying u(t, x)
e (C) for (t, x) e [0, To] >< 9.
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Remark. An analogous result can be shown for an unbounded domain
/2 with smooth, compact boundary tO by suitable modification of the
conditions.

:. Linearized problem. We. study the linearized problem of (1),"

( 6 ) A(t, x, u)vt+, A(t, x, u)v= g(t, x) in [0, T]
j=l

( 6 )2 M(x)v--O on [0, T]
( 6 ) v(O, x)--Vo(X) for x e
Let K) be a convex compact set. Let M_ and M be. positive constants.
We denote by X(T, [2 K, M_, M) the set of all functions u satisfying the
following conditions.

u e X(T, [2), M(x)u=O on [0, T]
( 7 ) u(t, x) e K for (, x) e [0, T] tO,

Theorem 1 is shown by iteration based on the following existence and
regularity result for the linearized problem.

Proposition 2. Assume Conditions 1,2, and 3. Let s_[n/2]+2 and
let ll<s. LetueX(T,2;K,M_,M)andletgeH([O,T]9)(theusual
Sobole space on [0, T] 9). Suppose tha Vo e H(t) and hat Vo satisfies
the compatibility conditions up to order l-1. Then the problem (6)_ has
a unique solution v e X(T, 9) satisfying
( 8 ) ]l]v(t)[[[_C(M_)e()

for t [0, T]. Here C(M), k=s-1, s, denote constants depending on M.
The existence of solution to the linearized problem (6), is proved by

the method of noncharacteristic regularization. (See Rauch [4] and
Schochet [5].) Therefore, for the. proof f Proposition 2, it suffices to shw
the following a priori estimate.

Proposition :. Assume Conditions 1, 2 (with maximal nonnegativity
replaced by nonnegativity), and 3. Let s_[n/2]+2 and let lls. Suppose
that u e X(T, tO K, M_, M) and that g e H([0, T] 9). Then a solution
v e X/(T, ) of the problem (6), satisfies the inequality (8) for t e [0, T].

Proof. We first prove (8) under the additional assumptions that

9=R=(Xn0}, M is a constant matrix, and the support of v(t) is contained
in {]x]_l, 0_x_0} for t e [0, T]. Here 0 is a small positive constant
depending on M_ which will be specified later. Let us denote by 3v the
tangential derivatives (i.e.., the derivatives with respect to t and x, ]=1,
.., n--l) of order k. Put I[v(t)] ]= .--0 Jlv(t) ]’, where [[. stands for the

L(/2)-norm. By virtue of Conditions 1 and 2, we. can use the. standard
energy method to obtain
( 9 ) [v(t)] I_Cec(i)t

C(M)[ ec(’)(t-)( [g(r)] +ll[v(r)[[ [)dr.+
jo
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Here and in what follows, C denotes a constant independent of M,_ and
M. To get estimates for the. normal derivatives, we use the linkage
operators S(t, x, u ), i- 1, ., p. Let S(t, x, u ) be. the modified linkage
operators and put

(10) w-(t, x, u 3)v:_ i(t, x, u)v, i- 1, ..., N.
j=l

Multiplying both sides of (6) on the left by S(t, x, u; 3), we see that each
w satisfies the linked system whose right member is a function depending
on (t, x, u) as well as the first order derivatives 3tu,u,3v,3v, and 3g.
Therefore, by applying the standard energy mehod, we obtain

where i=l,...,N. Finally we regard (6) and (10), i=l,...,N, as a
system of linear equations for the normal derivative 3v. By virtue of
Condition 3, this is solved forv on {x]l, 0xg0} with a small positive
constant 3o=6o(M_), and 3v is expressed in terms of (t, x, u), g, w, and
the first order tangential derivatives 3v. Using this expression, we obtain
the following estimate"

P

i=l

The desired estimate (8) follows from (9), (11), (12), and Gronwall’s inequality.
The general case can be reduced essentially to the case where the additional
assumptions are satisfied. This is carried out by making use of a parti-
tion of unity and changes o the dependent and independent variables.
Since the arguments are standard ones, we omit the details.
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