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Introduction. Let R be a fixed (not necessarily commutative) ring.
Throughout this nte, we are concerned with left R-modules M, A, H,
Like in’Goldie [1], we shall use the following terminology. A non-zero
submodule K of M is called essential in M (or M is an essential extension
of K) if K A----0 for any other submodule A of M, implies A-0. M has
finite Goldie dimension (abbr. FGD) if M does not contain a direct sum of
infinite number of non-zero submodules. Equivalently, M has finite Goldie
dimension if for any strictly increasing sequence H0, H, of submodules
of M, there is an integer i such that for every k>i, H is essential sub-
module in H/. M is uniform, if every non-zero submodule of M is essential
in M. Then it is proved (Goldie [1]) that in any module M with FGD, there
exist non-zero uniform submodules U, U,..., U whose sum is direct and
essential in M. The number n is independent of the uniform submodules.
This number n is called the Goldie dimension of M and denoted by dim M.
It is easily proved that if M has FGD then every submodule of M has also
FGD and dim K_dim M (K being a submodule of M).

Furthermore, if K, A are submodules of M, and K is a maximal sub-
module of M such that KA--O, then we say that K is a complement of
A (or a complement in M). It is easily proved that if K is a complement
in M, if and only if there exists a submodule A in M such that A K=0
and K’ A=/=0 for any submodule K’ of M containing K. In this case we
have K+A is essential in M.

We are now introducing a notien "E-irreducible submodule of M". A
submodule H of M is said to be E-irreducible if H--KJ, K and J are sub-
modules of M, and H is essential in K, imply H=K or H-J. Every
complement submodule is an E-irreducible submodule, but the converse is
not true.

Example 1. Consider Z, the ring of integers and Z, the ring of
integers modulo 12. Write R-Z and M----Z. Now the principal submodule
K of M generated by 2, is E-irreducible submodule, but not a complement
submodule.

Example 2. Consider R-Z and M--ZZ. Now the submodule
K=(4) (0)of M is not E-irreducible (since K=(Z (0)) ((4) Z) and K
is essential in Zs (0)).

The purpose of this note is to prove the following result.
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Main theorem. If K is a submodule of an R-module M and f M-
M/K is the canonical epimorphism, then the conditions given below are
equivalent.

( ) K=M or K is not essential, but E-irreducible.
(ii) K has no proper essential extensions.
(iii) K is a complement.
(iv) For any submodule K’ of M containing K, K’ is a complement in

M if and only if f(K’) is a complement in M/K.
(v) f(S) is essential in M/K for any essential submodule S of M.
Moreover, if M has FGD then each of the above conditions (i)-(v) are

equivalent to
(vi) M/K has FGD and dim (M/K) dim M-- dim K.
2. Some results. We now list the results used in this paper.
Proposition 1. ( ) If K, K’ are two submodules of M and K’ is essen-

tial extension of K (that is, K is essential in K’), then dim K--dim K’. (ii)

If A,B are two submodules such that the sum A+B is direct, then
dim (A+B)-- dim A-t- dim B. (iii) If M, N are two R-modules such that M
is isomorphic to N, then dim M=dim N. (iv) A complement submodule
has no proper essential extensions. (v) If A, B are two submodules such
that A ( B----(0), then there exists a submodule C which is a complement of
B containing A. (vi) Suppose K is a submodule of M. If K is not a com-
plement, then there exists a complement submodule in M, which is a proper
essential extension of K.

Proposition 2 (Proposition 2, p. 61 [2]). A module M is completely
reducible if and only if M contains no proper essential submodules.

:3. Theorems. We devide our main theorem into three different
theorems. In what follows, M will always mean a module.

Theorem 1. Let K be a submodule of M and f;M-(M/K) be the
canonical epimorphism. Then the following conditions are equ.ivalent.

( i ) K is a complement.
(ii) For any submoduIe K’ of M containing K, K’ is a complement in

M if and only if f(K’) is a complement in M/K.
(iii) For any essential submodule S of M, f(S) is essential in M/K.
Proof. (i)(ii) follows from the proof of Theorem 1.12 [1].
(ii)( ) Since f(K)--0 is a complement in M/K, it is evident that

K is complement.
( )(iii) One can easily show this using the fact "K has no proper

extensions".
(iii)( i ): Let X be a complement of K and K* be a complement of

X containing K. Now X-K is essential in M and so f(X)=f(X+K) is

essential in M/K. Since f(X) f(K*)=0, we have f(K*)=O which shows
K----K*. This completes the proof of the theorem.

Theorem 2. Let M be an R-module with finite Goldie dimension and
K be a submodule of M such that dim M--dimK+dim(M/K). Then K
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has no proper essential extensions in M.
Proof. If K--M, there is nothing to prove. Suppose K4=M and K

has a proper essential extension K’. So dim K-dim K’ and dim (K’/K)> 1.
Let C be a complement of K’. Then C/K’ is direct and essential in M.
So we have dim M-- dim (C+K’)- dim C+dim K’. Since ((C+K)/K) is
isomorphic with C, dim((C+K)/K)-.dimC. Since the sum (K’/K)+
((C+K) K) is direct, we have the following.

dim (M/K)>dim (K’/K)+dim ((C+K)/K)
>/l+dim C
1+dim M-- dim K’
1+ dim M-dim K
1+ dim (M/K).

This is a contradiction and hence K has no proper essential extensions.

Theorem 3. Let K be a submodule of M. Then the following are
equivalent.

( i ) K=M or K is not an essential submodule but it is an E-irreducible
submodule.

(ii) K has no proper essential extensions.
(iii) K is a complement.

Proof. ( )@(ii)" If K--M, then there is nothing to prove. Suppose
K is not essential, but E-irreducible. In a contrary way suppose K has
a proper essential extension K’. We now show K’ is essential in M. Let
I be a submodule such that K’ I-0. By modular law K’(K+I)
--K+ (IK’)=K. Since K is E-irreducible, K=/=K’ and K is essential in
K’, we have K=K+I, which implies I_KK’. So I=O and hence K’ is
essential in M. Since K is essential in K’, we have K is also essential in
M, a contradiction.

(ii)(iii)" Suppose K has no proper essential extensions. Let Z be
a complement of K, and K’ be a complement of Z containing K. Now K
is essential in K’ and by (ii), we have K--K’.

(iii)(ii)@( )" Follows from the definitions.
Proof of the main theorem.

( )<=>( ii )<=4(iii) Theorem 3.
(iii)<=(iv)<=4( v ) Theorem 1.
(iii)@(vi): Theorem 1.12 of [1].
(vi)@( ii Theorem 2.

Applications. Combining our Main theorem and Proposition 2,4
we have the following equivalent conditions for a module M to be "Com-
pletely reducible

Proposition 3. If M is an R-module, then the following conditions are
equivalent.

( ) M is a completely reducible module.
(ii) Every submodule of M is a complement submodule.
(iii) Every proper submodule of M is not an essential submodule but
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it is an E-irreducible submodule.
(iv) Every proper submodule of M has no proper essential extensions.
(v) For any submodule K of M with the canonical epimorphism

f: M--M/K, we have that K’ is a complement submodule in M if and only
if f(K’) is a complement submodule in M/K.

(vi) For any submodule K of M with the canonical epimorphism

f M--M/K, we have that: S is an essential submodule in M implies f(S)
is an essential submodule in M/K.

Moreover, if G has FGD, then the above conditions are equivalent to
each of the following.

(vii) M has the descending chain condition on its submodules.
(viii) For any submodule K of M, M/K has FGD and

dim (M/K) dim M-- dim K.
Goldie proved: If M is an R-module with FGD then for any comple-

ment submodule K of M, the module M/K has FGD and dim M=dim K+
dim (M/K). The converse of this result is a part of our main result.
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