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1. Introduction. In this paper we deal with the problem of the
existence of solutions for the quasilinear differential system with a boundary
condition
(1) ¥y=A(, )x+F(t, x)

(2) JU(x)=0.

Let A be a real nxn matrix continuous on R* X R", where R*=[0, 4 o),
and let F' be an R"-valued function continuous on R* X R*. We assume that
Jl is a continuous operator from CL™ into R™ (not necessarily linear), where
Cim={x e C(R*); lim,_,. x(t) exists and ||z(¢)||<r}. We consider the asso-
ciated linear problem

(3) 2’ =B(t)x

(4) L(x)=0.

Let B be a real nxXn matrix continuous on R* and let £ be a bounded linear
operator from C"™ into R", where C"™={xe C(R*); lim,__ ., 2(t) exists and
is finite}. For example, L(x)=Px(0)—Q lim,_, .. x(t), where P, @ are known
constant n Xn matrices.

Hypothesis H,. I:°°|1B(s>||ds< + oo,

Hypothesis H,. There exist no solutions for ((3), (4)) except for the
zero solution.

In [1], Kartsatos required some qualitative conditions for A in (1) and
proved the existence of solutions for ((1), (2)) under the conditions that
Hypotheses H, and H, hold and that A4, JI are sufficiently close to B, _L in
some sense, respectively. However, the conditions for A are necessary ones
if A is sufficiently close to B. We apply a different approach used in [2] and
obtain an extention of [1].

2. Preliminaries. The symbol ||-|| will denote a norm in R" and the
corresponding norm for »Xxn matrices. Let C(R*) be the space of R*-valued
functions continuous and bounded on R* with the supremum norm || -||..
Let M(R*) be the space of real nxn matrices continuous and bounded on
R* with the supremum norm ||A|l.=sup{|A®)||; te R*}. We put ||.L]|
=sup {|| L@)||; ||ell.=1} and S,={z e R"; ||z||<r}.

We denote X; by the fundamental matrix of solutions for (3) such that
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X;(0)=1I, where I is the identity matrix. From the equalities
XB(t)=I+I:B(s)XB(s)ds and X;(t)=I— j :X,;l(s)B(s)ds,
it follows that
IX, @<+ [ IBOIIXs@lds and | X0 <1+ [ |1 X5 B ds.

Using Gronwall’s lemma we obtain the following lemma.
Lemma 1. Suppose that Hypothesis H, holds. Then
(5) X <K, || Xz@|ZK forteR",

where K= exp(jm\ | B(s)llds) , and there exist lim,_ . . X(t) and lim,_, , X3'(0).
0

We denote U, by the constant matrix such that _L(X,(.)x,)=Ujzx, for
any z,€ R*. It is easy to prove the following lemma.

Lemma 2. The following statements (i)—-(iii) are equivalent.

(i) Hypothesis H, holds.

(ii) For each continuous R -valued function f such that Jm\l f(®)l\ds
0

<+ o0 and each c € R", there exists one and only one solution xe C™ for
the problem
' =B)x+ f(t), L(x)=ec.

(iii) det Uz=0.

The following lemma is an elementary result in linear algebra.

Lemma 3. Suppose that det U,+#0 holds. Then there exists a posi-
tive number p<1 such that
(6) 1U5=1/p.

A set S in C"™ is said to be equiconvergent if for any ¢>0 there exists
a T(e)>0such that|| f({)—lim,_, ., f(z)||<eforall f e Sandall t=T(). From
Ascoli-Arzeld’s theorem we have the following.

Lemma 4. If a set S in C"'™is uniformly bounded, equicontinuous and
equiconvergent, then S is relatively compact in CH™.

3. Theorems. We assume that Hypotheses H, and H, hold. From
Lemmas 1 and 2 there ewists a number p in (6). We assume that the fol-
lowing conditions (7)—(9) hold.

(7) A, 2)—B@®)||<m(t)  for (I, ) e R*XS,.
(8) \F(t, D)||<mot)  for (t, ) e R*XS,.
(9) L@ —Tz)||Lar for xe Cim,

Here non-negative numbers s, a, R and measurable functions m,, m, satisfy
the following conditions (10)-(13).

10) K5 exp (K*) <p/{{|-LIII1U5]}-
11) aK exp (6)<p(l—p).
12) R< p(1—p)—aK exp (5)

{K* exp (20)|| L||+p(1—p)}K exp (3)
(13) j:mml(s)dsg s, f U my(s)ds<rR.
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Now we consider the linear problem
14) ¥'=A(, y®)x+F(t, y@)
(15) L(x)=L(y)—Ty)
for ye C¥=. Let X, be the fundamental matrix of solutions for (14)
such that X ,(0)=I. From (7), (13) and Hypothesis H, it follows that
J:wnA(s, ¥(s))||ds< + oo for ye C¥=. By applying Lemma 1 we have the
constant matrix U, such that L(X,(-)x)=U,x, for any y € Ci™= and any
x, € R"™.
We prove the existence and uniqueness of the solution for ((14), (15)).
Theorem 1. Suppose that Hypotheses H, and H, hold. If the condi-
tions (7)-(13) are satisfied, then for y e C;™ there exists the inverse of U,
such that
(16) 1T 1</ 4o —p))
and there exists one and only one solution xz, € Ci™ for ((14), (15)).
Proof of Theorem 1. From the variation of parameters formula we

have X ,(t)=X B(t)+XB(t)j:XE’(8){A(8, y(8))— B(s)}X ,(s)ds. By (5), (7) and (13)
|| X, (&) — X x(D))|
< K2I:|1A(s, Y(E)—BE)|| | X,()—Xx(s)lds+K'  for te R*.
By (7), (10), (13) and Gronwall’s lemma, we have for ¢ ¢ R*
X, X0 <K s exp (K [ || 4G, y(©)— (@) ds)

o/{lILINUE 1}
Then for x,c R"
anmn (Us— U2 || S| LI X 5 — X |lue [ 20
Zell@||/I|Uz"|l.

By (6) it follows that ||U,a,||=p(1—p)||,|| for 2,€ R*. Hence U, has the
inverse and (16) holds.

By Lemma 2 the problem ((14), (15)) has one and only one solution z,
such that
(18) x,®)=U"[L@)—I(y)—L(p,(-)]

+j:A<s, ¥(),(s)ds +j F(s, y(s))ds,

where p,(t)=X ,(£) rX,;l(s)F(s, ¥(s))ds for te R*. By the same way in (5),
0

1 X, O]LK exp (6) and || X;'®)||<K exp (6) for te R*. This yields ||p,|l.

<rRK?exp (25). From (18) we obtain

oA HILIEE SR opy [ 4s, vz, (@ds  for te R,
p(1—p 0

so that, by Gronwall’s lemma,

\\m(t)\\_s_(““”{‘)‘a’ﬁ;e"p @1 1R) exp ([l 4G, ysllds)  for teR".

Thus ||z, (t)||<r for te R*. This completes the proof.
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By applying the fixed point theorem we obtain the following theorem.
Theorem 2. Suppose that Hypotheses H,and H, hold. If the conditions
(71)—(18) are satisfied, then there exists at least one solution for ((1), (2)).
Proof of Theorem 2. 1t is easy to show that the solution z, for ((14),
(15)) can be expressed by
19  z,O=X,0OU;LW-Ty)—L®,(N+p,@t)  forteR".
Define C{/: Ci»—C¥™ by CV(y)=ux, for y e Ci™, then CI/ maps the closed
convex set Cl™ into itself.
Let y,— Y, (n—o0) in Ci™, We have for t€ R*

X,"(t)=Xw(t)+X,,,,(t)j:X;:(s){A(s, U2(8) — A, Y(N}X,.()ds.

This yields [|X,,—X,,|l.< K" exp (39) j:mllA(s, Yo (8) — A(s, yo(s))||ds. By

Lebesgue’s convergence theorem, X, —X, (n—o0) in M(R*). By the same
way in (17), |(U,,— U, )z || LI X, — X |l || %,|| for 2, € R*. This implies
U yu— Uy |l>0 (n—>00). From (16) || U — U I<[IU,y,— Uy |l/{e’1—p)}. We
have ||U;!—U,}||=>0 (n—oc0). By the same argument about the convergence
of {X,.}, X;!—>X,' (n—>oc0) in M(R*). Therefore it follows that, by Lebesgue’s
convergence theorem,

j :X,;:(s)F(s, yn(s»ds-»j:X;:(s)ms, u)ds (o)

uniformly with respect to te R*. Thus, by (19),
VW)~V (@y,) (m—>o0) in C)™,
i.e., €/ is continuous on Ci=,
It is clear that C/(C™) is uniformly bounded. By (18)
(CEV@NE)— (CVYNED ||

< Uz{m,(s)H\B(s)n}rds} + ) j :mz(s)d31 for t,, t,e R*.

It follows that C{/(C¥™) is equicontinuous. By the same argument about the
equicontinuity, C/(C¥™) is equiconvergent. Thus, by Lemma 4, C{/(Ci™) is
a relatively compact set in CU=,

According to Schauder’s fixed point theorem, </ has at least one fixed
point in C¥=, Therefore there exists at least one solution for ((1), (2)), and
this completes the proof.

References

[1] A.G. Kartsatos: A stability property of the solution to a boundary value problem
on an infinite interval. Math. Japonica, 19, 187-194 (1974).

[2] S. Saito and M. Yamamoto: On the existence of periodic solutions for periodic
quasilinear ordinary differential systems. Proc. Japan Acad., 63A, 62-65 (1987).



