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1o Introduction. In this paper we deal with the problem of the
existence o solutions or the quasilinear differential system with a boundary
condition
( 1 ) x’--A(t, x)x+F(t, x)
( 2 ) 37(x) 0.
Let A be a real nn matrix continuous on R/Rn, where R [0, +c),
and let F be n Rn-valued unction continuous on R/R. We assume that
37 is a continuous operator from C into R (not necessarily linear), where
C(:={x e C(R/) lime/ x(t) exists and IIx(t)ll<__r}. We consider the asso-
ciated linear problem
( 3 ) x’--B(t)x
( 4 ) .if(x) 0.
Let B be a real n n matrix continuous on R and let A7 be a bounded linear
operator from C‘m into R", where C"--{x e C(R+) lim_+= x(t) exists and
is finite}. For example, _C(x)=Px(O)-Q lim+= x(t), where P, Q are known
constant n n matrices.

Hypothesis H. II B()IIg< +
HTpothesis H. There exist no solutions for ((a), (4)) except for the

ero solution.
In [1], Kartsatos required some qualitative conditions for A in (1)and

proved the existence of solutions for ((1), (2)) under the eonditions that
Hypotheses H and H hold and that A, are sufficiently close to B, ..’ in
some sense, respectively. However, the conditionsr A are necessary ones
if A is sufficiently close to B. We apply a different approach used in [2] and
obtain an extention of [1].

:2,. Preliminaries. The symbol I1" II will denote a norm in R and the
corresponding norm for matriees. Let C(R/) be the space ot R-valued
functions continuous and bounded on R with the supremum norm I1"
Let M(R/) be the space of real matrices continuous and bounded on
R with the supremum norm llAIl=sup{llA(t)ll; t e R/}. We put
=sup{llA:(x)ll Ilxll=l} and S={x e R;

We denote X by the undamental matrix of solutions 2or (3) such that
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X(0)=I, where I is the identity matrix. From the equalities

X(t) .=I+.[: B(s)X(s)ds nd X(t) I--.[:X(s)B(s)ds,

it follows that

Using Gronwall’s lemma we obtain the following lemma.
Lamina 1. Suppose that Hypothesis H, holds. Then

(5) IIX,(t)ll K, I(X’(t)[I =K for t e R+,

(I )where K=exp IIB(s)llds and there exist lim/X(t) and lim_/ X(t).

We denote U by the constant matrix such that iT(X(.)x0) Uxo for
any Xo e Rn. It is easy to prove the ollowing lemma.

Lamina 2. The following statements (i)-(iii) are equivalent.
( ) Hypothesis H holds.

(ii) For each continuous R-valued function f such that IIf(s)llds

+ c and each c e Rn, there exists one and only one solution x e Clira for
the problem

x’=- B(t)x+ f(t), _f(x)-- c.
(iii) det U:/: 0.
The ollowing lemma is an elementary result in linear algebra.
Lamina :. Suppose that det U:/:O holds. Then there exists a posi-

tire number pl such that
(6) IIull<_/.

A set S in C is said to be equiconvergent if for any 0 there exists
a T(D0 such that IIf(t)-lim/ f(r)lle or all f e S and all tT(e). From
Ascoli-Arzel’s theorem we have the ollowing.

Lemma 4. If a set S in Cim is uniformly bounded, equicontinuous and
equiconvergent, then S is relatively compact in Cm.

:. Theorems. We assume that Hypotheses H1 and H2 hold. From
Lemmas 1 and 2 there exists a number p in (6). We assume that the fol-
lowing conditions (7)-(9) hold.
( 7 ) llA(t, x)-B(t)llm(t) for (t, x) e R St.
( 8 ) liE(t, x)ll<-m(t) for (t, x)e R XS.
( 9 ) II.f(x)--(x)ll<=ar for x e C.
Here non-negative numbers , a, R and measurable functions m, m satisfy
the following conditions (10)-(13).
(10) K3 exp (K3)<=p/{II_FIIII
(11) aK exp () p(1--p).

(12) R<_ p(1--p)--aK exp ()
{K exp (2)ll.ll+p(1-p)}K exp ()

(13) m(s)ds<=3, m2(s)dsrR.
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Now we consider the linear problem
(14) x’= A(t, y(t))x- F(t, y(t))
(15) _(x)--.g’(y)- (y)
for y e CTM. Let Xv be the fundamental matrix of solutions for (14)
such that X(O)=I. From (7), (13) and Hypothesis H it follows that

_[jA(s, y(s))[]ds< + for y e CTM. By applying Lemma 1 we have the

constant matrix Uv such that (X(.)Xo)= Uxo for any y e C and any
X0 R.

We prove the existence and uniqueness of the solution for ((14), (15)).
Theorem 1. Suppose that Hypotheses H and H hold. If the condi-

tions (7)-(13) are satisfied, then for y e C there exists the inverse of U
such that
(16)
and there exists one and only one solution x e C for ((14), (15)).

Proof of Theorem 1. From the variation of parameters formula we

have X(t)=X(t)+X,(t) ,X(){A(, ())--B()}X()g. By (g), (7) and (la)

gK.[:IIA(s, y(s))-B(s)II IX(s)-X,(s)Ids+K for te R+.
By (7), (10), (13) and Gronwall’s lemma, we have for t e R

X,() K exp (K .:, A(s, y(s))- B(s),, ds)Ix(t)

Then for ao R

By (6) it follows that [Uvxolp(1-p)[Xo[ for x0 e R. Hence U has the
inverse and (16) holds.

By Lemma 2 the problem ((14), (15)) has one and only one solution
such that
(is) x(t) u;[ZCy)-(y)-Z(p( ))]

+ A(, ())()g+ (, ())g,

where p(t)=X(t) [X;()(, ())g for t e R*. By the same way in (g),

IIX(t)lg ex () and IX;(t)llK ex (8) for t e *. his yields

rRK ex (2). Nrom (18) we obtain

[x(t)[lgar+rRK exp (2) +rR+fto[[A(s, y(s))lll[xv(s)IIds for t e R+,

so that, by Gronwall’s lemma,

,,x(),,<(ar+,,rRK exp (2)+rR)exp (:,A(s, y(s)),,ds) ore R

Thus I[x(t)[gr for t e R+. This completes the proof.
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By applying the fixed point theorem we obtain the following theorem.
Theorem 2. Suppose that Hypotheses H1 and H hold. If the conditions

(7)-(13) are satisfied, then there exists at least one solution for ((1), (2)).
Proof of Theorem 2. It is easy to show that the solution x for ((14),

(15)) can be expressed by
(19) x(t)--X(t)U;1[_(y)--37(y)-.(p(.))]+p(t) for t e R/.
Define c. "-’r’lim---’lim’-’r by c(?(y)=x for y e ’lim, then c(? maps the closed
convex set c into itself

Let Y-Yo (n--+oo) in CTM. We have for t e R

X(t)=Xo(t)+Xo(t) oX;J(){A(, ())-A(, 0())}X()g.

This yields IIX-Xoll<Kex(a) IIA(, ()-A(, 0())11o By

Lebesgue’s eonvergenee theorem, X-Xo (---c) in M(R/). By the same
way in (17), II(U-Uo)Xoll<=ll.1111X-XolIIlxolI tor e R. TSis implies

II U- U,olI0 (c). From (16) II U,-- U;II<__II U- UolI/{O(1-O)}. We
have II U-1- U;oll--0 (n-+oo). By the same rgument about the convergence
of {X.}, X--.X-o (noc) in M(R/). Therefore it follows that, by Lebesgue’s
convergence theorem,

uniformly with respect to t e R/. Thus, by (19),
c(?(yn)--C(yo) (n-+ oo) in im’r

e, c(? is continuous on m
It is clear that c(?(Cr) is uniformly bounded. By (18)

(c(?(y))(t) (c(?(y))(t)

te R/

It follows that ci?(C) is equicontinuous. By the same argument about the
equicontinuity, c(?(Cm) is equiconvergent. Thus, by Lemma 4, cF(CTM) is
a relatively compact set in Cm.

According to Schauder’s fixed point theorem, cl? has at least one fixed
point in CTM. Therefore there exists at least one solution for ((1), (2)), and
this completes the proof.
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