48. On the Highest Degree of Absolute Polynomials of Alternating Links

By Tetsuo Mryauchi
Department of Mathematics, School of Science and Engineering, Waseda University
(Communicated by Kunihiko Kodaira, m. J. A., May 12, 1987)

§ 1. Statement of results. Let L be a tame link in S^{3}. For a regular projection \tilde{L} of $L, c(\tilde{L})$ denotes the number of crossings of \tilde{L} and $c(L)$ denotes the minimum number of crossings among all regular projections of L. \tilde{L} divides S^{2} into finitely many domains, which can be colored by two colors (black and white) like a chess-board such that domains of the same color meet only at crossing points. Let $g(\tilde{L})$ and $g^{*}(\tilde{L})$ be the graphs of \tilde{L} such that vertices of $g(\tilde{L})$ and $g *(\tilde{L})$ correspond to the white and the black domains, respectively, and each edge of $g(\tilde{L})$ and $g^{*}(\tilde{L})$ corresponds to a crossing of \tilde{L}. A vertex v of a graph is called a stump if the valency of v is equal to one, and a twig if the valency of v is equal to two.
R. D. Brandt, W. B. R. Lickorish and K. C. Millett defined in [1] an unoriented link invariant $Q(L)$ called the absolute polynomial. We refer the reader to [1] for the details.

In this paper we prove the following
Theorem. Let L be a tame alternating link and \tilde{L} a regular alternating projection of L. Then the following conditions are equivalent:
(1) The graphs $g(\tilde{L})$ and $g^{*}(\tilde{L})$ are connected without stumps, loops and cut-vertices.
(2) The highest degree of the absolute polynomial $\dot{Q}(L)$ of L is equal to $c(\tilde{L})-1$, and the coefficient of the term of the highest degree of $Q(L)$ is positive.
K. Murasugi proved in [5] that if \tilde{L} is a regular connected proper alternating projection of an alternating link L, then the reduced degree of Jones polynomial [2] of L is equal to $c(\tilde{L})$ and $c(\tilde{L})=c(L)$. If L is a prime alternating link, then L has a regular projection \tilde{L} which satisfies the condition (1) of Theorem. Therefore we have

Corollary 1. If L is a prime alternating link then the highest degree of $Q(L)$ is equal to $c(L)-1$.

The following is a part of Theorem 1 of W. Menasco [4], for which we will give an alternative proof.

Corollary 2. If L_{1} and L_{2} are alternating links and $L=L_{1} \# L_{2}$ is also an alternating link, then, for any connected regular proper alternating projection \tilde{L} of $L, g(\tilde{L})$ and $g^{*}(\tilde{L})$ have cut-vertices.

In [3], M. E. Kidwell independently obtained the similar results to our theorem. His method of the proof is different from ours.
§ 2. Proofs. We work in the PL category and all projections of links we consider are assumed to be regular.

The absolute polynomial $Q(L)$ has the following properties:
Theorem A ([1, Properties 1 and 8]). Let L, L_{1} and L_{2} be tame links in S^{3} then the following formulae hold.
(a) $Q\left(L_{1} \# L_{2}\right)=Q\left(L_{1}\right) Q\left(L_{2}\right)$, where $L_{1} \# L_{2}$ denotes any connected sum of L_{1} and L_{2}.
(b) $Q\left(L_{1} \circ L_{2}\right)=\mu Q\left(L_{1}\right) Q\left(L_{2}\right)$, where $\mu=2 x^{-1}-1$ and $L_{1} \circ L_{2}$ denotes split union.
(c) $h-\operatorname{deg} Q(L) \leqq c(L)-1$, where $h-\operatorname{deg} Q(L)$ denotes the highest degree of $Q(L)$.

To prove Theorem, we prove the following lemmas.
Lemma 1. We suppose that \tilde{L} is an alternating projection of a link L such that $c(\tilde{L}) \geqq 3$ and that $g(\tilde{L})$ is a connected graph without stumps, loops and cut-vertices. Let \tilde{L}_{0} and \tilde{L}_{∞} be the projections in [1, Theorem]. Then \tilde{L}_{0} and \tilde{L}_{∞} are again alternating projections and either $g\left(\tilde{L}_{0}\right)$ or $g\left(\tilde{L}_{\infty}\right)$ is a connected graph without stumps, loops and cut-vertices.

Proof. Fig. 1 shows that \tilde{L}_{0} and \tilde{L}_{∞} are alternating projections.

Fig. 1
Without loss of generality, we may assume that \tilde{L}_{0} and \tilde{L}_{∞} are as shown in Fig. 2.

Fig. 2
By the condition of $g(\tilde{L})$, both $g\left(\tilde{L}_{0}\right)$ and $g\left(\tilde{L}_{\infty}\right)$ are connected, and $g\left(\tilde{L}_{0}\right)$ has no loops and $g\left(\tilde{L}_{\infty}\right)$ has no stumps. There are two cases to be considered.

Case 1. The graph $g\left(\tilde{L}_{0}\right)$ has a stump: In this case, $g(\tilde{L})$ has a twig. Since $c(\tilde{L}) \geqq 3$ and $g(\tilde{L})$ has no cut-vertices, $g(\tilde{L})$ is as in Fig. 3.

Fig. 3
Then $g\left(\tilde{L}_{\infty}\right)$ has none of stumps, loops and cut-vertices.
Case 2. $g\left(\tilde{L}_{0}\right)$ has a cut-vertex: In this case $g\left(\tilde{L}_{\infty}\right)$ has none of stumps, loops and cut-vertices. See Fig. 4.

Fig. 4
Lemma 2. If \tilde{L} is a non-alternating projection of a link L, then

$$
h-\operatorname{deg} Q(L) \leqq c(\tilde{L})-2
$$

Proof. If \tilde{L} is disconnected, then by Theorem A the assertion holds. Therefore it is sufficient to consider the case \tilde{L} is connected. Since \tilde{L} is a non-alternating projection, we may assume that \tilde{L} has two successive under crossing points p_{1} and p_{2}.

Fig. 5
We can obtain a sequence of link projections $\tilde{L}=\tilde{L}_{0} \rightarrow \tilde{L}_{1} \rightarrow \tilde{L}_{2} \rightarrow \cdots \rightarrow \tilde{L}_{m}$ such that \tilde{L}_{i+1} is obtained from \tilde{L}_{i} by switching one of the crossings except p_{1} and p_{2} and that \tilde{L}_{m} is an ascending projection of \tilde{L}. Since we do not switch the crossings p_{1} and p_{2} in all \tilde{L}_{i} 's, all \tilde{L}_{i} 's are non-alternating projections.

Hence we can obtain a resolution R of \tilde{L} such that all projections of R are non-alternating projections. Since a non-alternating projection whose number of crossings is two is a trivial link, we can obtain trivial links by smoothing at most $c(\tilde{L})-2$ crossings. Hence $h-\operatorname{deg} Q(L) \leqq c(\tilde{L})-2$.

Proof of Theorem. First, we prove necessity. If $g(\tilde{L})$ has a stump or a loop, then there exists the projection \tilde{L}^{\prime} of L such that $c\left(\tilde{L}^{\prime}\right)=c(\tilde{L})-1$. Therefore $h-\operatorname{deg} Q(L) \leqq c\left(\tilde{L}^{\prime}\right)-1=c(\tilde{L})-2$. If $g(\tilde{L})$ is disconnected then $\tilde{L}=\tilde{L}_{1} \cup \tilde{L}_{2} \cup \cdots \cup \tilde{L}_{n}$, where \tilde{L}_{i} is a connected component and $n \geqq 2$. By Theorem A we have $h-\operatorname{deg} Q(L)=\sum_{i=1}^{n} h-\operatorname{deg} Q\left(L_{i}\right) \leqq \sum_{i=1}^{n}\left(c\left(\tilde{L}_{i}\right)-1\right)=$ $\sum_{i=1}^{n} c\left(\tilde{L}_{i}\right)-n=c(\tilde{L})-n<c(\tilde{L})-1$. If $g(\tilde{L})$ has a cut-vertex then $g(\tilde{L})$ is one point union of subgraphs Γ_{1} and Γ_{2}. Let \tilde{i}_{i} denote the projection corresponding to $\Gamma_{i}(i=1,2)$. Since L is a split or connected sum of links l_{1} and l_{2}, we have h - $\operatorname{deg} Q(L)=\sum_{i=1}^{2} h-\operatorname{deg} Q\left(l_{i}\right) \leqq \sum_{i=1}^{2}\left(c\left(\tilde{l}_{i}\right)-1\right)=\sum_{i=1}^{2} c\left(\tilde{l}_{i}\right)-2$ $<c(\tilde{L})-1$.

Now we prove sufficiency of Theorem by induction on $c(\tilde{L})$. In case $c(\tilde{L})=2, L$ is the Hopf link and $Q(L)=-2 x^{-1}+1+2 x$. In case $c(\tilde{L}) \geqq 3$, by Lemma 1, at least one of \tilde{L}_{0} and \tilde{L}_{∞} has a connected graph without stumps, loops, and cut-vertices. If $g\left(\tilde{L}_{0}\right)$ and $g\left(\tilde{L}_{\infty}\right)$ have stumps, loops, or cutvertices, then, by Theorem A, h - $\operatorname{deg} Q\left(\tilde{L}_{0}\right)<c\left(\tilde{L}_{0}\right)-1$ and $h-\operatorname{deg} Q\left(\tilde{L}_{\infty}\right)<$ $c\left(\tilde{L}_{\infty}\right)-1$, respectively. If both $g\left(\tilde{L}_{0}\right)$ and $g\left(\tilde{L}_{\infty}\right)$ are connected graphs without stumps, loops and cut-vertices, by the hypothesis of induction the coefficient of the highest degree term is positive. Therefore h - $\operatorname{deg}\left(x\left(Q\left(\tilde{L}_{0}\right)\right.\right.$ $\left.\left.+Q\left(\tilde{L}_{\infty}\right)\right)\right)=c(\tilde{L})-1$. Since \tilde{L}_{-}is obtained from \tilde{L} by switching a crossing, $h-\operatorname{deg} Q\left(\tilde{L}_{-}\right) \leqq c(\tilde{L})-2$ by Lemma 2. Since $Q\left(\tilde{L}_{+}\right)=-Q\left(\tilde{L}_{-}\right)+x\left(Q\left(\tilde{L}_{0}\right)+\right.$ $\left.Q\left(\tilde{L}_{\infty}\right)\right)$ and the coefficient of the highest degree term is positive, we have that h-deg $Q\left(\tilde{L}_{+}\right)=c\left(\tilde{L}_{+}\right)-1$ and the coefficient of the highest degree term is positive. For the graph $g^{*}(\tilde{L})$, we can prove similarly and the proof is complete.

Proof of Corollary 2. If there exists \tilde{L} such that $g(\tilde{L})$ and $g^{*}(\tilde{L})$ have no cut-vertices, then $h-\operatorname{deg} Q(L)=c(\tilde{L})-1=c(L)-1$ by Theorem.

By Corollary 4 of [5] and Theorem A we have $c(L)-1=h$-deg $Q(L)=$ h-deg $Q\left(L_{1}\right)+h$-deg $Q\left(L_{2}\right) \leqq c\left(L_{1}\right)-1+c\left(L_{2}\right)-1=c\left(L_{1}\right)+c\left(L_{2}\right)-2=c(L)-2$. This is a contradiction.

Acknowledgements. The author would like to express his hearty gratitudes to Professor Shin'ichi Suzuki for valuable comments and suggestions.

References

[1] R. D. Brandt, W. B. R. Lickorish, and K. C. Millett: Invent. math., 84, 563-573 (1986).
[2] V. F. R. Jones: Bull. Amer. Math. Soc., 12, 103-111 (1985).
[3] M. E. Kidwell: On the degree of the Brandt-Lickorish-Millett polynomial of a link (preprint).
[4] W. Menasco: Topology, 23, 37-44 (1984).
[5] K. Murasugi: Jones polynomials and classical conjectures in knot theory (preprint).

