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1. Statement of results. Let L be a tame link in S. For a regular
projection L of L, c(L) denotes the number of crossings of L and c(L)
denotes the minimum number of crossings among all regular projections
of L. L divides S into finitely many domains, which can be colored by
two colors (black and white) like a chess-board such that domains of the
same color meet only at crossing points. Let g(L) and g*(L) be the graphs
of L such that vertices of g(L) and g*(L) correspond to the white and the
black domains, respectively, and each edge of g(L) and g*(L) corresponds
to a crossing of L. A vertex v of a graph is called a sump if the valency
of v is equal to one, and a twig if the valency of v is equal to two.

R. D. Brandt, W. B. R. Lickorish and K. C. Millett defined in [1] an
unoriented link invariant Q(L) called the absolute polynomial. We refer
the reader to. [1] for the details.

In this paper we prove the following

Theorem. Le L be a tame alternating linl and L a regular alter-
nating projection of L. Then the following conditions are equivalent"
(1) The graphs g(L) and g*(L) are connected withou stumps, loops and
cut-vertices.
(2) The highest degree of he absolute polynomial (L) of L is equal to
c(L) 1, and the coefficient of the term of the highest degree of Q(L) is positive.

K. Murasugi proved in [5] that if L is a regular connected proper
alternating projection of an alternating link L, then the reduced degree of
Jones polynomial [2] of L is equal to c(L) and c(L)=c(L). If L is a prime
alternating link, then L has a regular projection L which satisfies the con-
dition (1) of Theorem. Therefore we have

Corollary 1. If L is a prime alternating link then the highes degree
of Q(L) is equal o c(L)-1.

The following is a part of Theorem 1 of W. Menasco [4], for which we
will give an alternative proof.

Corollary 2. If L and L are alternating links and L=L L2 is also
an alternating link, then, for any connected regular proper alternating
projection [, of L, g(L) and g*(L) have cut-vertices.

In [3], M. E. Kidwell independently obtained the similar results to our
theorem. His method of the proof is different from ours.
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2. Proofs. We work in the PL category and all projections of links
we consider are assumed to be regular.

The absolute polynomial Q(L) has the following properties"
Theorem A ([1, Properties 1 and 8]). Let L, L and L be tame links

in S then the following formulae hold.
(a) Q(LL)--Q(L)Q(L), where LL denotes any connected sum of L
and L.
(b) Q(L L)=/Q(L)Q(L.), where l 2x-- 1 and L L denotes split
union.
(c) h-degQ(L)c(L)-l, where h-deg Q(L) denotes the highest degree of
Q(L).

To prove Theorem, we prove the following lemmas.
Lemma 1. We suppose that L is an alternating projection of a link

L such that c(L)3 and that g(L) is a connected graph without stumps,
loops and cut-vertices. Let Lo and L be the projections in [1, Theorem].
Then Lo and L are again alternating projections and either g(Lo) or g(L)
is a connected graph without stumps, loops and cut-vertices.

Proof. Fig. 1 shows that L0 and L are alternating projections.

Fig. 1

Without loss of generality, we may assume that L and L are as shown in
Fig. 2.

Fig. 2

By the condition of g(L), both g(L0) and g(L) are connected, and g(L0) has
no loops nd g(L) has no stumps. There are two eses to be eonsidered.
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Case 1. The graph g(Lo) has a stump" In this case, g(L) has a twig.
Since c(L)>=3 and g(L) has no cut-vertices, g(L) is as in Fig. 3.

Fig. 3

Then g(L) has none of stumps, loops and cut-vertices.
Case 2. g(Lo) has a cut-vertex" In this case g(L) has none of stumps,

loops and cut-vertices. See Fig. 4.

L Lo L
Fig. 4

Lemma 2. If L is a non-alternating projection of a link L, then
h-deg Q(L) <= c(L) 2.

Proof. If L is disconnected, then by Theorem A the assertion holds.
Therefore it is sufficient
non-alternating projection, we may assume that L has two. sueeessive under
crossing points p and

P2

Fig. 5,

We can obtain a sequence of link projections L--Lo---L--L--...--+L such
that L/ is obtained from L by switching one of the crossings except p
and p and that L is an ascending projection o L. Since we do not switch
the crossings p end p in all L’s, all L’s are non-alternating projections.



No. 5] Absolute Polynomials of Alternating Links 177

Hence we can obtain a resolution R of L such that all projections of R are
non-alternating projections. Since a non-alternating projection whose
number of crossings is two is a trivial link, we can obtain trivial links by
smoothing at most c(L)-2 crossings. Hence h-deg Q(L)

Proof of Theorem. First, we prove necessity. If g(L) has a stump
or a loop, then there exists the projection L’ of L such that c(L’)-c(L)--1.
Therefore h-deg Q(L) <=c(L’)- 1 c(L)-2. If g(L) is disconnected then
L=LL... uL, where , is a connected component and n=>2. By
Theorem A we have h-deg Q(L) -_1 h-deg Q(L)
.= c(L3-n=c(L)-n<c(L)-l. If g(L) has a cut-vertex then g(L) is one
point union o subgraphs F and F. Let l denote the projection cor-
responding to F (i= 1, 2). Since L is a split or connected sum of links
and l, we have h-deg Q(L)-= h-deg Q(l) <,= (c(i)- 1)

__
c(i)- 2

c(L)--l.
Now we prove sufficiency of Theorem by induction on c(L). In case

c(L)=2, L is the Hopf link and Q(L)---2x-’+l+2x. In case c(L)>=3, by
Lemma 1, at least one of L0 and L has a connected graph without stumps,
loops, and cut-vertices. If g(Lo) and g(L) have stumps, loops, or cut-
vertices, then, by Theorem A, h-deg Q(L0)c(L0)-I and h-degQ(,)
c(/,)--l, respectively. I both g(L0) and g(,) are connected graphs
without stumps, loops and cut-vertices, by the hypothesis of induction the
coefficient of the highest degree term is positive. Therefore h-deg (x(Q(Lo)
Q(L)))--c(L)--I. Since L_ is obtained rom L by switching a crossing,
h-deg Q(L_) <_ c(L)-2 by Lemma 2. Since Q(L/)= Q(L_) / x(Q(Lo) /
Q(L)) and the coefficient o the highest degree term is positive, we have
that h-deg Q(L/)=c(L/)--I and the coefficient o the highest degree term
is positive. For the graph g*(L), we can prove similarly and the proo is
complete.

Proof of Corollary 2. I there exists L such that g(L) and g*(L) have
no cut-vertices, then h-deg Q(L) c(L) 1 c(L) 1 by Theorem.

By Corollary 4 o [5] and Theorem A we have c(L)--l=h-deg Q(L)-
h-deg Q(L,) + h-deg Q(L) c(L) 1 + c(L2) 1 c(L) + c(L2)--2 c(L)- 2.
This is a contradiction.
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