39. A Note on a Generalization of a q-series Transformation of Ramanujan

By H. M. Srivastava*)
Department of Mathematics, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
(Communicated by Kôsaku Yosida, M. J. A., May 12, 1987)

It is shown how readily a recent generalization of a q-series transformation of Srinivasa Ramanujan would follow as a limiting case of Heine's transformation for basic hypergeometric series. Several interesting consequences of this general result are also deduced.

For real or complex $q,|q|<1$, let

$$
\begin{equation*}
(\lambda ; q)_{\mu}=\prod_{j=0}^{\infty}\left(1-\lambda q^{j}\right) /\left(1-\lambda q^{\mu+\jmath}\right) \tag{1}
\end{equation*}
$$

for arbitrary λ and μ, so that

$$
(\lambda ; q)_{n}=\left\{\begin{array}{r}
1, \quad \text { if } n=0, \\
(1-\lambda)(1-\lambda q) \cdots\left(1-\lambda q^{n-1}\right), \quad \forall n \in\{1,2,3, \cdots\},
\end{array}\right.
$$

and

$$
\begin{equation*}
(\lambda ; q)_{\infty}=\prod_{j=0}^{\infty}\left(1-\lambda q^{j}\right) \tag{3}
\end{equation*}
$$

The q-series transformation

$$
\begin{equation*}
(-\mathrm{b} q ; q)_{\infty} \sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(-b q ; q)_{n}} \frac{\lambda^{n}}{(q ; q)_{n}}=\sum_{n=0}^{\infty} q^{(1 / 2) n(n+1)}\left(-\frac{\lambda}{b} ; q\right)_{n} \frac{b^{n}}{(q ; q)_{n}} \tag{4}
\end{equation*}
$$

is stated in Chapter 16 of the Second Notebook of Srinivasa Ramanujan [9, Vol. II, p. 194, Entry 9]. A special case of Ramanujan's identity (4) when $b=1$ was posed as an Advanced Problem by Carlitz [5, p. 440, Equation (1)] who, in fact, proved the general case (4) by using Euler's expansion for $(\lambda ; q)_{n}$ as a polynomial in λ (cf. [6, p. 917]). The identity (4) has received considerable attention in several subsequent works (see, for example, [1], [2], and [8]). In particular, in their excellent memoir [1, pp. 9-10] Adiga et al. have presented two interesting proofs of (4). It should be remarked in passing that one of their proofs using Heine's transformation [7, p. 306, Equation (79)] iteratively is essentially equivalent to the earlier proof by Andrews [2, p. 105] who deduced (4) as a limiting case of a result attributed to Rogers.

An interesting generalization of Ramanujan's q-series transformation (4) was given recently by Bhargava and Adiga in the form (cf. [4, p. 339, Equation (3)] ; see also [3, p. 14, Equation (4*)]):

[^0]\[

$$
\begin{align*}
(-b q ; q)_{\infty} & \sum_{n=0}^{\infty} q^{(1 / 2) n(n+1)} \frac{(-\lambda / a ; q)_{n}}{(-b q ; q)_{n}} \frac{a^{n}}{(q ; q)_{n}} \tag{5}\\
& =(-a q ; q)_{\infty} \sum_{n=0}^{\infty} q^{(1 / 2) n(n+1)} \frac{(-\lambda / b ; q)_{n}}{(-a q ; q)_{n}} \frac{b^{n}}{(q ; q)_{n}}
\end{align*}
$$
\]

which would obviously reduce to (4) in the limiting case when $a \rightarrow 0$. Replacing λ by λ / q, and setting

$$
a=-x / q \quad \text { and } \quad b=-y / q
$$

the identity (5) becomes

$$
\begin{equation*}
\sum_{n=0}^{\infty} q^{(1 / 2) n(n-1)} \frac{(\lambda / x ; q)_{n}}{(y ; q)_{n}} \frac{(-x)^{n}}{(q ; q)_{n}}=\frac{(x ; q)_{\infty}}{(y ; q)_{\infty}} \sum_{n=0}^{\infty} q^{(1 / 2) n(n-1)} \frac{(\lambda / y ; q)_{n}}{(x ; q)_{n}} \frac{(-y)^{n}}{(q ; q)_{n}} \tag{6}
\end{equation*}
$$

or equivalently,

$$
{ }_{1} \Phi_{1}\left[\begin{array}{c}
\lambda / x ; \tag{7}\\
y ;
\end{array}\right]=\frac{(x ; q)_{\infty}}{(y ; q)_{\infty}} \Phi_{1} \Phi_{1}\left[\begin{array}{c}
\lambda / y ; q, y \\
x ;
\end{array}\right],
$$

where ${ }_{p+1} \Phi_{p+j}(p, j=0,1,2, \cdots)$ denotes a generalized basic (or q-) hypergeometric series defined by

$$
\begin{align*}
&{ }^{p+1} \tag{8}\\
& \Phi_{p+j} {\left[\begin{array}{l}
\alpha_{1}, \cdots, \alpha_{p+1} ; q, x \\
\beta_{1}, \cdots, \beta_{p+j} ;
\end{array}\right] } \\
&=\sum_{n=0}^{\infty}(-1)^{j n} q^{(1 / 2) j n(n-1)} \frac{\left(\alpha_{1} ; q\right)_{n} \cdots\left(\alpha_{p+1} ; q\right)_{n}}{\left(\beta_{1} ; q\right)_{n} \cdots\left(\beta_{p+j} ; q\right)_{n}} \frac{x^{n}}{(q ; q)_{n}},
\end{align*}
$$

$$
(|x|<\infty \text { when } j=1,2,3, \cdots \text {, or }|x|<1 \text { when } j=0)
$$

Formula (5) was proven by Bhargava and Adiga [4, pp. 340-341] by making use of Ramanujan's identity (4) and of certain functional relations which they had derived earlier [3, p. 14, Lemma 1] for the left side of (5). With a view to presenting a much shorter and direct proof of the equivalent result (6) or (7), we now recall the aforementioned Heine's transformation [7, p. 306, Equation (79)]

$$
{ }_{2} \Phi_{1}\left[\begin{array}{c}
a, b ; \tag{9}\\
c ;
\end{array} q, x\right]=\frac{(b ; q)_{\infty}(a x ; q)_{\infty}{ }_{2} \Phi_{1}}{(c ; q)_{\infty}(x ; q)_{\infty}}\left[\begin{array}{c}
x, c / b ; \\
a x ;
\end{array} q, b\right],
$$

which, upon repeated application, yields

$$
{ }_{2} \Phi_{1}\left[\begin{array}{c}
a, b ; \tag{10}\\
c ;
\end{array}{ }^{q}, x\right]=\frac{(c / b ; q)_{\infty}(b x ; q)_{\infty}}{(c ; q)_{\infty}(x ; q)_{\infty}} \Phi_{1}\left[\begin{array}{c}
a b x / c, b ; \\
b x ;
\end{array} \begin{array}{c}
q, c / b
\end{array}\right] .
$$

It is the transformation (10) which was, in fact, employed by Andrews [2, p. 105] as well as Adiga et al. [1, pp. 9-11] to deduce Ramanujan's identity (4) as a limiting case. Indeed, as we indicated above, Andrews [2, p. 98, Equation (4.6)] attributed (10) to Rogers, although Heine did give (9) and a relatively more familiar ${ }_{2} \Phi_{1}$ transformation (cf. [7, p. 325, Theorem XVIII]) which follows readily upon merely iterating Heine's result (9) one more step beyond the transformation (10).

Replacing x by x / b and letting $b \rightarrow \infty$ in (10), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} q^{(1 / 2) n(n-1)} \frac{(a ; q)_{n}}{(c ; q)_{n}} \frac{(-x)^{n}}{(q ; q)_{n}}=\frac{(x ; q)_{\infty}}{(c ; q)_{\infty}} \sum_{n=0}^{\infty} q^{(1 / 2) n(n-1)} \frac{(a x / c ; q)_{n}}{(x ; q)_{n}} \frac{(-c)^{n}}{(q ; q)_{n}} \tag{11}
\end{equation*}
$$

Now set $a=\lambda / x$ and $c=y$ in (11), and we are led immediately to the q-series identity (6) which, in turn, yields the q-hypergeometric form (7) by virtue
of the definition (8).
Several consequences of the q-series identity (6) are worthy of note. First of all, if in (6) we set $\lambda=y$, we immediately obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} q^{(1 / 2) n(n-1)} \frac{(y / x ; q)_{n}}{(y ; q)_{n}} \frac{(-x)^{n}}{(q ; q)_{n}}=\frac{(x ; q)_{\infty}}{(y ; q)_{\infty}} \tag{12}
\end{equation*}
$$

or, equivalently,

$$
{ }_{1} \Phi_{1}\left[\begin{array}{c}
y / x ; q, x \tag{13}\\
y ;
\end{array}\right]=\frac{(x ; q)_{\infty}}{(y ; q)_{\infty}} .
$$

Formula (12) reduces, when $x \rightarrow 0$ and $y=a q$, to Entry 3 in Chapter 16 of Ramanujan's Second Notebook (cf., e.g., [1, p. 5, Equation (5.1)]).

Next we put $y=q$ and $\lambda=q^{2}$ in (6), and replace x by $q x$. We thus find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} q^{(1 / 2) n(n+1)} \frac{(q / x ; q)_{n}}{\left\{(q ; q)_{n}\right\}^{2}}(-x)^{n}=\frac{(q x ; q)_{\infty}}{(q ; q)_{\infty}} \sum_{n=0}^{\infty}(-1)^{n} \frac{q^{(1 / 2) n(n+1)}}{(q x ; q)_{n}} . \tag{14}
\end{equation*}
$$

Finally, we replace q by q^{2} in (6), and then set $y=q$ and $\lambda=q^{3}$. Writing $q^{2} x$ for x in the resulting identity, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} q^{n(n+1)} \frac{\left(q / x ; q^{2}\right)_{n}}{(q ; q)_{2 n}}(-x)^{n}=\frac{\left(q^{2} x ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n^{2}}}{\left(q^{2} x ; q^{2}\right)_{n}} \tag{15}
\end{equation*}
$$

Each of these last q-series identities (14) and (15) reduces, when $x \rightarrow 0$, to a corresponding result given earlier by Adiga et al. [1, p. 10, Corollaries (i) and (ii)].

References

[1] C. Adiga, B. C. Berndt, S. Bhargava and G. N. Watson: Chapter 16 of Ramanujan's Second Notebook; Theta-functions and q-series, Mem. Amer. Math. Soc., vol. 53 (no. 315), Amer. Math. Soc., Providence, Rhode Island (1985).
[2] G. E. Andrews: An introduction to Ramanujan's "lost" notebook. Amer. Math. Monthly, 86, 89-108 (1979).
[3] S. Bhargava and C. Adiga: On some continued fraction identities of Srinivasa Ramanujan. Proc. Amer. Math. Soc., 92, 13-18 (1984).
[4] -: A basic hypergeometric transformation of Ramanujan and a generalization. Indian J. Pure Appl. Math., 17, 338-342 (1986).
[5] L. Carlitz: Advanced problem no. 5196. Amer. Math. Monthly, 71, 440-441 (1964).
[6] -: Multiple sum-product identities. ibid., 72, 917-918 (1965).
[7] E. Heine: Untersuchungen über die Reihe J. Reine Angew. Math., 34, 285328 (1847).
[8] V. Ramamani and K. Venkatachaliengar: On a partition theory of Sylvester. Michigan Math. J., 19, 137-140 (1972).
[9] S. Ramanujan: Notebooks of Srinivasa Ramanujan. Vols. I and II, Tata Institute of Fundamental Research, Bombay (1957).

[^0]: *) This research was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant A-7353.

 1980 Mathematics Subject Classification (1985 Revision). Primary 33A30; Secondary $11 \mathrm{~B} 65,05 \mathrm{~A} 30$.

