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1. Introduction. Let d be a positive square-free integer. We
denote by o(d) the algebraic integer /d (resp. (1/2)(1//d)) in the real
quadratic field Q(/-d) if d---2 or 3 (mod 4) (resp. d-----1 (mod 4)), and by
z/(d) and h(d) the discriminant and the class number of Q(/d ), respectively.
The positive real quadratic irrational co(d) can be expanded into the periodic
infinite continued fraction"

co(d)--[a0, , ..., d]--[a0, al, ..., a, al, .-., a, ...]

--a0_t_l/l_t_l +
al a2 a3

where a0, a, are positive integers. We call k the period of co(d) or of
Q(/d) and denote it by k(d).

The purpose of this note is to give a characterization of real quadratic
fields Q(/d) with h(d)=k(d)----1, in analogy to Rabinovitch’s theorem ([5],
[6]) characterizing imaginary quadratic fields whose class number is 1.

2. Preliminaries. We recall some facts about integral indefinite
binary quadratic forms (cf. [2], Ch. VI). Let Q(zl(d)) denote the set of
integral quadratic forms aX/bXY/cY with the discriminant /(d)=b
--4ac. Two orms aX + bXY+ cY and a’X / b’XY+ c’Y in Q((d)) are
said to be (properly) equivalent if a’(X’) / b’X’Y’/ c’(Y’)=aX / bXY/ cY,
(X’, Y’)=(X, Y)M, or some M e SLy(Z). We denote by Q/(zl(d))the quo-
tient of Q((d)) by this equivalence relation. There is a natural bijection
between Q/(l(d)) and the ideal class group of Q(/d ) in the narrow sense.
We shall denote its order by h/(d).

A quadratic orm aX+bXY/ cY in Q((d)) is said to be reduced i
0/Z(dj-b 21a]/](-d)+ b. Using the continued raction w(d) [a0,
d,-.., d()], we define reduced orms, in Q((d)), =(--1)AX+BXY
/(--1)/A/Y, i=0, 1,.--, where A and B are inductively defined by
A0=l, Bo=Tr(ao--co(d)), A-:---Nm(ao--co(d)), B/+B=2a/IA/ and
(B+/(d)/(2A/)=[a+, a/, a/,-..]. By the periodicity o o(d), we
get ()=0 or ()=o according as/c(d) is even or odd. Moreover any
reduced orm which is equivalent to 0 coincides with or some i.

3. initeness of the number of real quadratic fields with given class
number and period. Let w(d)=[a0, d, ..., ()] be as above; then we have
the following:

Lemma 1. (1) a=a()_ for Oik(d) and a()=Tr (ao--co(d)).



98 R. SASAKI [Vol. 62 (A),

(2) aao for O<i<k(d).
Proof. (1) is well-known (cf. [1]). Since a similar proo works in

case d=l (mod 4), we shall prove (2) only in case d--2 or 3 (mod 4). Since
is reduced, we have O</(di--B<2A. Similarly we get O<v/zl(d)--Bo

<2A0=2. Since B0=2a0, it ollows that all B are even. Assume A=I
(i0). Then we have B=B0; hence A+,=A,. Thus we get (B+J](d))
/(2A+,) (Bo+J(d))/(2A,) this means i0 (mod k(d)). Since

+ J]d)) / (2A) [a, a +,, ], we get a<(B_ +())/(2A) hence 2Aa
<B_,+2w(d). Since B_, is even, we have B+B_,=2aA<2ao+B_.
Thus we have B<2ao. Similarly we have A+,a+ <ao+B/2; hence
<2ao. I 0<i<(d)--l, then A+,2 hence a+, <ao. Q.E.D.

Let F(d) be the undamental unit of the real quadratic field Q(Jd),
which is given by F(d)=p()_+w’q()_,, where w’=w(d)(resp, w(d)--l)
d2, 3 (mod 4) (resp. dl (mod 4)). Then P()-,/q()-i is the (k(d)--l)-th
convergent to w(d)= [ao, d,,..., d()] (c. [2], [3]). Moreover we have
Nm (F(d))=(--1)(a) hence we have h(d)---h+(d) if k(d) is odd.

Lemma 2. (3/2)()-(dS(d)(d)().

Proof. Assume d2 or 3 (mod 4). Let Pn/Gn be the n-th convergent
to the infinite continued fraction o(d)=[ao, d,, ..., d()], i.e., p and q are
given by

po=ao, p,=aao+l, p=ap_l+p_ (n2)
qo=l, ql=a,, qn:aq-l+qn- (n2).

We shall prove p+Jq(2J d)+’. By the above equations and Lem. 1

(2), we have Po+Jdqo=ao+J-d-2d and p,+Jdq,=aoa,+l+Jdal
(aoY+ 1 +Jdao(2J-dy. Inductively we get p+ d q a(p _1 + J d

+Pn-+ dq-<ao(2Jd-)+(2J d)n- (2-)n+. Next we shall show the
first inequality. Let Un denote the Fibonacci sequence which is defined
by u=l, u=l and u=u_+u_ or n3. Then we have p+Jdq
u+J-d. For Po+Jdqo=ao+dJd=uJd and p,+Jdq,=a,ao+l
+dao+l+J32J3-uJ3--. Inductively we have Pn+J d q-a(p_l
+J dq_,)+(p_+J-d-q_)(un+l+U)--=u+d. Since u+/u+3/2
(n 0), it ollows that Pn + Jq > U+ -3 (U / U ,) (U / U)
(u/u)2=2(3/2)-’=(3/2)-’(d). A similar proo works in case
dl (mod 4). Q.E.D.

Theorem 1. For given positive integers h and k, there exist a finite
number of real quadratic fields Q(-) with k=k(d) and h=h(d).

Proof. Suppose there exists an infinite sequence {d} of square-ree
positive integers such that d,<d<.-, and k(d)=k. By Siegel’s theorem
(c. [3] Ch. 12), we have

(E) lim !g (h(g) log

lim log (h(d)k) log ((1 / k) log (d)) 1
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By Lem. 2, we have Olog(di)klog/zl(d). It ollows that the second
term in the middle of (E) is 0; hence the first term is 1, which guarantees
our assertion. Q.E.D.

:. Main Theorems. We shall begin with the ollowing"
Lemma :). Let be a positive real number and ao, al, a2 positive inte-

gers; then we have
( 1 ) a= [ao, d,](-------)a=-(1/2)(2ao--a//a/4 )
2 a= [ao, d, d]=}a=(1/2)(2ao--a.)+(1/(2a))/a[-h-a(f-4).

Proof. Straightforward. Q.E.D.
For a square-free positive integer d, let P(X)denote the polynomial

X+Tr((o(d))X+Nm(w(d)). We denote by [a] the greatest integer not
exceeding a real number a.

Lemma 4. Assume d----l (mod 4). If
P([(1/2)/d ])=-1 (resp. P([(1/2)/d-])-1),

then k(d) 1 (resp. k(d)-= 2 or d 5).

Proof. Set (d)=[ao, d, ..., d()], then ao(o(d)=(1/2)(l+/d)ao
+1; hence [(1/2)/d]=ao or ao--1. If [(1/2)/d]--ao and P(ao)=a+ao
/ (1/4)(1 d) 1, then (o(d) (1/2)[2(ao/ 1) (2ao/ 1)/ /(2ao/ 1) + 4 } [ao
+1, 2do--1] by Lem. 3 this means k(d)=l. I [(1/2)/-]=ao and P(ao)=l,
then d=(2ao+1)--4= (2ao--1)(2ao--1+4) and o(d)=(1/2)(2ao--(2ao--1)
+/(2ao--1)(2ao--l+4)}; hence o(d)=[ao, i, 2o-1]. I ao=l, o(d)=[1, ];
this means d=5. We shall omit a similar proo which works in case
[(1/2)/--] ao-- 1. Q.E.D.

Theorem 2. Assume d--2 (mod 4); then h(d)=k(d)=l if and only if
d=2.

Proof. If d=2, then h(2)=1 and o(2)=/2-[1, 5.]; hence k(2)=1.
Conversely assume h(d)=k(d)=l. Then we have /d =[ao, d] or some
positive integers ao, a hence, by Lem. 3, /d-- (1/2)(2ao-a+/a+4). It
ollows that 2ao=a and d=a/l. Since d--2 (mod 4), ao is odd. Suppose
ao>3. Since O/(d)--2(ao--1)4/(d)+2(ao--1), the quadratic orm
2X/2(ao--1)XY--aoY is a reduced one with the discriminant z/(d)=4d.
Since h(d)=k(d)=l, by the act stated in the last part in 2, any reduced
orm must be o X/2aoXY--Y or )= --X/2aoXY/Y this is a

contradiction. Thus we have ao=l and d--2. Q.E.D.
Remark. If d--3 (mod 4), then k(d) is even.

Theorem :). Assume d--1 (mod 4); then the following (1)-(4) are
equivalent"

(1) h(d)= k(d) 1.
(2) d--p/ 4 is a prime, where p is an odd prime or 1. Let n

Nm (x+ (o(d)y), x, y e Z, such that (x, y) (p, n) 1 and nl (2p 3) then

nl is a prime or 1.
(3) d=p+4 is a prime, where p is an odd prime or 1. If x e Z saris-

ties 0x2p--3 and x:/:(1/2)(3p+1), (3/2)(p--1), thenlP(x)] is a prime or 1.
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(4) d=5, or IP(O)], ..., IP([(1/2)/d ]--l)lare primes and P([(1/2)/-d ])

Proof. (1)(2) Since k(d)=l, (o(d)=(1/2)(l+/-d-)=[a0, (1]=(1/2)(2a0
-a+/+4) or some positive integers a0, a; hence d =2a0-a--I
+Jh+4 and d=(2a0--1)+4. Let p=2a0--1 then p is a prime or 1. For,
suppose p is neither a prime nor 1, we have p=pp with 3pp. Since
p is odd, we can set p=2b--1 or some 2b eZ. Then 4Nm(b+w(d))
=(2b+1)--d=(2b--1)(2b+3)--p; hence p divides Nm (b+w(d)). Since
J(d)--Tr(b+w(d))=J-d---(2b+l)O, we have a non-negative integer n
such that OJ(d)--Tr(b+np+w(d))2p. Then the quadratic orm
Q pX +Tr (b +np+w(d))XY+ (1/p) Nm (b +np + w(d))Y is an integral
reduced orm with the discriminant (d)=d. Since h(d)=k(d)=l, Q must
be equal to o=X+Tr (ao--(d))XY--Y or =--X+Tr (ao--(d))XY
+ Y; this is impossible. Next we shall show that p+4 is a prime number.
Suppose p+4 qq such that q 2b + 1 is a prime number and 3 q q.
By the same argument as above, using q and b, we get the conclusion.
The last part of (2) is proved by F. G. Frobenius ([4] 5).

(2)(3) Since P(x) (1/4){(2x +1)-(p + 4)}= (1/4)[(2x-1)(2x+ 3) p}
Nm (x+ w(d)), (2) implies (3).
(3)(4)" If p=l, then d=5. I p3, then [(1/2)d]=[(1/2)p+4]

=(1/2)(p-1) and P([(1/2)d-])=-l.
(4)(1)" Since h(5)=k(5)=1, we assume d5. By Lem. 4, we have

k(d)=l. Suppose h(d)2, and there exists a non-principal integral prime
ideal a such that lNm a(1/2)2(d). Since a is not a principal ideal,
Nm a=q is a prime. There exists an integer b such that a=[q, b+w(d)]
=ZqZ(b+w(d)) and Obq(1/2)(d)=(1/2)d. Then q divides
Nm (b + w(d)) P(b) this contradicts to the assumption (4). Q.E.D.

Remark. There are six fields Q(J d ) with h(d)=k(d)=l;
d=5 13 29 53 173 293
p=l 3 5 7 13 17.

I do not know whether there are other such fields (c. [4]).
By the same method we obtain similar results or real quadratic fields

Q(4d-) with h(d)k(d)2.
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