29. A Characterization of Certain Real Quadratic Fields

By Ryuji Sasaki
Department of Mathematics, College of Science
and Technology, Nihon University
(Communicated by Shokichi Iyanaga, m. J. A., March 12, 1986)

§ 1. Introduction. Let d be a positive square-free integer. We denote by $\omega(d)$ the algebraic integer \sqrt{d} (resp. $(1 / 2)(1+\sqrt{d})$) in the real quadratic field $\boldsymbol{Q}(\sqrt{ } \bar{d})$ if $d \equiv 2$ or $3(\bmod 4)(\operatorname{resp} . d \equiv 1(\bmod 4)$), and by $\Delta(d)$ and $h(d)$ the discriminant and the class number of $\boldsymbol{Q}(\sqrt{d})$, respectively. The positive real quadratic irrational $\omega(d)$ can be expanded into the periodic infinite continued fraction :

$$
\begin{aligned}
\omega(d) & =\left[a_{0}, \dot{a}_{1}, \cdots, \dot{a}_{k}\right]=\left[a_{0}, a_{1}, \cdots, a_{k}, a_{1}, \cdots, a_{k}, \cdots\right] \\
& =a_{0}+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}+\cdots,
\end{aligned}
$$

where a_{0}, a_{1}, \cdots are positive integers. We call k the period of $\omega(d)$ or of $\boldsymbol{Q}(\sqrt{ } d)$ and denote it by $k(d)$.

The purpose of this note is to give a characterization of real quadratic fields $\boldsymbol{Q}(\sqrt{d})$ with $h(d)=k(d)=1$, in analogy to Rabinovitch's theorem ([5], [6]) characterizing imaginary quadratic fields whose class number is 1.
§2. Preliminaries. We recall some facts about integral indefinite binary quadratic forms (cf. [2], Ch. VI). Let $Q(\Delta(d))$ denote the set of integral quadratic forms $a X^{2}+b X Y+c Y^{2}$ with the discriminant $\Delta(d)=b^{2}$ $-4 a c$. Two forms $a X^{2}+b X Y+c Y^{2}$ and $a^{\prime} X^{2}+b^{\prime} X Y+c^{\prime} Y^{2}$ in $Q(\Delta(d))$ are said to be (properly) equivalent if $a^{\prime}\left(X^{\prime}\right)^{2}+b^{\prime} X^{\prime} Y^{\prime}+c^{\prime}\left(Y^{\prime}\right)^{2}=a X^{2}+b X Y+c Y^{2}$, $\left(X^{\prime}, Y^{\prime}\right)=(X, Y) M$, for some $M \in S L_{2}(Z)$. We denote by $Q_{+}(\Delta(d))$ the quotient of $Q(\Delta(d))$ by this equivalence relation. There is a natural bijection between $Q_{+}(\Delta(d))$ and the ideal class group of $\boldsymbol{Q}(\sqrt{d})$ in the narrow sense. We shall denote its order by $h_{+}(d)$.

A quadratic form $a X^{2}+b X Y+c Y^{2}$ in $Q(\Delta(d))$ is said to be reduced if $0<\sqrt{ } \Delta(\bar{d})-b<2|a|<\sqrt{ } \Delta(d)+b$. Using the continued fraction $\omega(d)=\left[a_{0}\right.$, $\left.\dot{a}_{1}, \cdots, \dot{a}_{k(d)}\right]$, we define reduced forms, in $Q(\Delta(d)), \Phi_{i}=(-1)^{i} A_{i} X^{2}+B_{i} X Y$ $+(-1)^{i+1} A_{i+1} Y^{2}, i=0,1, \cdots$, where A_{i} and B_{i} are inductively defined by $A_{0}=1, \quad B_{0}=\operatorname{Tr}\left(a_{0}-\omega(d)\right), \quad A_{1}=-\operatorname{Nm}\left(a_{0}-\omega(d)\right), \quad B_{i+1}+B_{i}=2 a_{i+1} A_{i+1}$ and $\left(B_{i}+\sqrt{ } \Delta(d)\right) /\left(2 A_{i+1}\right)=\left[a_{i+1}, a_{i+2}, a_{i+3}, \cdots\right]$. By the periodicity of $\omega(d)$, we get $\Phi_{k(d)}=\Phi_{0}$ or $\Phi_{2 k(d)}=\Phi_{0}$ according as $k(d)$ is even or odd. Moreover any reduced form which is equivalent to Φ_{0} coincides with Φ_{i} for some i.
§3. Finiteness of the number of real quadratic fields with given class number and period. Let $\omega(d)=\left[a_{0}, \dot{a}_{1}, \cdots, \dot{a}_{k(d)}\right]$ be as above; then we have the following :

Lemma 1. (1) $a_{i}=a_{k(d)-i}$ for $0<i<k(d)$ and $a_{k(d)}=\operatorname{Tr}\left(a_{0}-\omega(d)\right)$.
(2) $a_{i} \leqslant a_{0}$ for $0<i<k(d)$.

Proof. (1) is well-known (cf. [1]). Since a similar proof works in case $d \equiv 1(\bmod 4)$, we shall prove (2) only in case $d \equiv 2$ or $3(\bmod 4)$. Since Φ_{i} is reduced, we have $0<\sqrt{\Delta(d)}-B_{i}<2 A_{i}$. Similarly we get $0<\sqrt{\Delta(d)}-B_{0}$ $<2 A_{0}=2$. Since $B_{0}=2 a_{0}$, it follows that all B_{i} are even. Assume $A_{i}=1$ ($i>0$). Then we have $B_{i}=B_{0}$; hence $A_{i+1}=A_{1}$. Thus we get ($B_{i}+\sqrt{\Delta}(\bar{d})$) $/\left(2 A_{i+1}\right)=\left(B_{0}+\sqrt{ } \Delta(d)\right) /\left(2 A_{1}\right)$; this means $i \equiv 0(\bmod k(d))$. Since $\left(B_{i-1}\right.$ $+\sqrt{\Delta(d)}) /\left(2 A_{i}\right)=\left[a_{i}, a_{i+1}, \cdots\right]$, we get $a_{i}<\left(B_{i-1}+\sqrt{ } \Delta(d)\right) /\left(2 A_{i}\right)$; hence $2 A_{i} a_{i}$ $<B_{i-1}+2 \omega(d)$. Since B_{i-1} is even, we have $B_{i}+B_{i-1}=2 a_{i} A_{i} \leqslant 2 a_{0}+B_{i-1}$. Thus we have $B_{i} \leqslant 2 a_{0}$. Similarly we have $A_{i+1} a_{i+1} \leqslant a_{0}+B_{i} / 2$; hence $A_{i+1} a_{i+1}$ $\leqslant 2 a_{0}$. If $0 \leqslant i<k(d)-1$, then $A_{i+1} \geqslant 2$; hence $a_{i+1} \leqslant a_{0}$.
Q.E.D.

Let $\eta(d)$ be the fundamental unit of the real quadratic field $\boldsymbol{Q}(\sqrt{ } d)$, which is given by $\eta(d)=p_{k(d)-1}+\omega^{\prime} q_{k(d)-1}$, where $\omega^{\prime}=\omega(d)$ (resp. $\left.\omega(d)-1\right)$ if $d \equiv 2,3(\bmod 4)(\operatorname{resp} . d \equiv 1(\bmod 4))$. Then $p_{k^{(d)-1}} / q_{k(d)-1}$ is the $(k(d)-1)$-th convergent to $\omega(d)=\left[a_{0}, \dot{a}_{1}, \cdots, \dot{a}_{k(d)}\right]$ (cf. [2], [3]). Moreover we have $\mathrm{Nm}(\eta(d))=(-1)^{k(d)}$; hence we have $h(d)=h_{+}(d)$ if $k(d)$ is odd.

Lemma 2. $(3 / 2)^{k(d)-2} \sqrt{\Delta}(d)<\eta(d)<\sqrt{\Delta(d)^{k(d)}}$.
Proof. Assume $d \equiv 2$ or $3(\bmod 4) . ~ L e t ~ p_{n} / q_{n}$ be the n-th convergent to the infinite continued fraction $\omega(d)=\left[\alpha_{0}, \dot{\alpha}_{1}, \cdots, \dot{\alpha}_{k(d)}\right]$, i.e., p_{n} and q_{n} are given by

$$
\begin{aligned}
& p_{0}=a_{0}, \quad p_{1}=a_{1} a_{0}+1, \quad p_{n}=a_{n} p_{n-1}+p_{n-2} \quad(n \geqslant 2) \\
& q_{0}=1, \quad q_{1}=a_{1}, \quad q_{n}=a_{n} q_{n-1}+q_{n-2} \quad(n \geqslant 2) .
\end{aligned}
$$

We shall prove $p_{n}+\sqrt{ } \bar{d} q_{n}<(2 \sqrt{d})^{n+1}$. By the above equations and Lem. 1 (2), we have $p_{0}+\sqrt{d} q_{0}=a_{0}+\sqrt{d}<2 \sqrt{d}$ and $p_{1}+\sqrt{d} q_{1}=a_{0} a_{1}+1+\sqrt{ } d a_{1}$ $\leqslant\left(a_{0}\right)^{2}+1+\sqrt{d} a_{0}<(2 \sqrt{d})^{2}$. Inductively we get $p_{n}+\sqrt{ } \bar{d} q_{n}=a_{n}\left(p_{n-1}+\sqrt{d} q_{n-1}\right)$ $+p_{n-2}+\sqrt{ } \bar{d} q_{n-2}<a_{0}(2 \sqrt{ } \bar{d})^{n}+(2 \sqrt{d})^{n-1}<(2 \sqrt{d})^{n+1}$. Next we shall show the first inequality. Let u_{n} denote the Fibonacci sequence which is defined by $u_{1}=1, u_{2}=1$ and $u_{n}=u_{n-1}+u_{n-2}$ for $n \geqslant 3$. Then we have $p_{n}+\sqrt{ } \bar{d} q_{n}$ $>u_{n+2} \sqrt{d}$. For $p_{0}+\sqrt{d} q_{0}=a_{0}+\sqrt{d}>\sqrt{d}=u_{2} \sqrt{d}$ and $p_{1}+\sqrt{d} q_{1}=a_{1} a_{0}+1$ $+\sqrt{d} \geqslant a_{0}+1+\sqrt{d}>2 \sqrt{d}=u_{3} \sqrt{d}$. Inductively we have $p_{n}+\sqrt{d} q_{n}=a_{n}\left(p_{n-1}\right.$ $\left.+\sqrt{d} q_{n-1}\right)+\left(p_{n-2}+\sqrt{d} q_{n-2}\right)>\left(u_{n+1}+u_{n}\right) \sqrt{d}=u_{n+2} \sqrt{d}$. Since $u_{n+2} / u_{n+1} \geqslant 3 / 2$ $(n \geqslant 0)$, it follows that $p_{n}+\sqrt{d} q_{n}>u_{n+2} \sqrt{d}=\left(u_{n+2} / u_{n+1}\right)\left(u_{n+1} / u_{n}\right) \ldots$ $\left(u_{4} / u_{3}\right) 2 \sqrt{a}=2(3 / 2)^{n-1} \sqrt{a}=(3 / 2)^{n-1} \sqrt{\Delta}(d)$. A similar proof works in case $d \equiv 1(\bmod 4)$.
Q.E.D.

Theorem 1. For given positive integers h and k, there exist a finite number of real quadratic fields $\boldsymbol{Q}(\sqrt{d})$ with $k=k(d)$ and $h=h(d)$.

Proof. Suppose there exists an infinite sequence $\left\{d_{n}\right\}$ of square-free positive integers such that $d_{1}<d_{2}<\cdots$ and $k\left(d_{i}\right)=k$. By Siegel's theorem (cf. [3] Ch. 12), we have

$$
\begin{align*}
\lim _{i \rightarrow \infty} & \frac{\log \left(h\left(d_{i}\right) \log \eta\left(d_{i}\right)\right)}{\log \sqrt{d_{i}}} \tag{E}\\
\quad & \lim _{i \rightarrow \infty} \frac{\log \left(h\left(d_{i}\right) k\right)}{\log \sqrt{d_{i}}}+\lim _{i \rightarrow \infty} \frac{\log \left((1 / k) \log \eta\left(d_{i}\right)\right)}{\log \sqrt{d_{i}}}=1 .
\end{align*}
$$

By Lem. 2, we have $0<\log \eta\left(d_{i}\right)<k \log \sqrt{\Delta\left(d_{i}\right) \text {. It follows that the second }}$ term in the middle of (E) is 0 ; hence the first term is 1 , which guarantees our assertion.
Q.E.D.
§3. Main Theorems. We shall begin with the following :
Lemma 3. Let α be a positive real number and a_{0}, a_{1}, a_{2} positive integers; then we have
(1) $\alpha=\left[a_{0}, \dot{a}_{1}\right] \Longleftrightarrow \alpha=(1 / 2)\left(2 a_{0}-a_{1}+\sqrt{a_{1}^{2}+4}\right)$
(2) $\alpha=\left[a_{0}, \dot{a}_{1}, \dot{a}_{2}\right] \Longleftrightarrow \alpha=(1 / 2)\left(2 a_{0}-a_{2}\right)+\left(1 /\left(2 a_{1}\right)\right) \sqrt{a_{1} a_{2}\left(a_{1} a_{2}+4\right)}$.

Proof. Straightforward.
Q.E.D.

For a square-free positive integer d, let $P(X)$ denote the polynomial $X^{2}+\operatorname{Tr}(\omega(d)) X+\operatorname{Nm}(\omega(d))$. We denote by $[\alpha]$ the greatest integer not exceeding a real number α.

Lemma 4. Assume $d \equiv 1(\bmod 4)$. If

$$
P([(1 / 2) \sqrt{d}])=-1(\operatorname{resp} . P([(1 / 2) \sqrt{d}])=1)
$$

then $k(d)=1(\operatorname{resp} . k(d)=2$ or $d=5)$.
Proof. Set $\omega(d)=\left[a_{0}, \dot{a}_{1}, \cdots, \dot{a}_{k(d)}\right]$, then $a_{0}<\omega(d)=(1 / 2)(1+\sqrt{ } \bar{d})<a_{0}$ +1 ; hence $[(1 / 2) \sqrt{ } d]=a_{0}$ or $a_{0}-1$. If $[(1 / 2) \sqrt{d}]=a_{0}$ and $P\left(a_{0}\right)=a_{0}^{2}+a_{0}$ $+(1 / 4)(1-d)=-1$, then $\omega(d)=(1 / 2)\left\{2\left(a_{0}+1\right)-\left(2 a_{0}+1\right)+\sqrt{\left(2 a_{0}+1\right)^{2}+4}\right\}=\left[a_{0}\right.$ $\left.+1,2 \dot{a}_{0}-1\right]$ by Lem. 3 ; this means $k(d)=1$. If $[(1 / 2) \sqrt{d}]=a_{0}$ and $P\left(a_{0}\right)=1$, then $d=\left(2 a_{0}+1\right)^{2}-4=\left(2 a_{0}-1\right)\left(2 a_{0}-1+4\right) \quad$ and $\omega(d)=(1 / 2)\left\{2 a_{0}-\left(2 a_{0}-1\right)\right.$ $\left.+\sqrt{\left(2 a_{0}-1\right)\left(2 a_{0}-1+4\right)}\right\}$; hence $\omega(d)=\left[a_{0}, \dot{1}, 2 \dot{\alpha}_{0}-1\right]$. If $\alpha_{0}=1, \omega(d)=[1, \dot{1}]$; this means $d=5$. We shall omit a similar proof which works in case $[(1 / 2) \sqrt{d}]=a_{0}-1$.
Q.E.D.

Theorem 2. Assume $d \equiv 2(\bmod 4)$; then $h(d)=k(d)=1$ if and only if $d=2$.

Proof. If $d=2$, then $h(2)=1$ and $\omega(2)=\sqrt{2}=[1, \dot{2}]$; hence $k(2)=1$. Conversely assume $h(d)=k(d)=1$. Then we have $\sqrt{d}=\left[a_{0}, \dot{a}_{1}\right]$ for some positive integers a_{0}, a_{1}; hence, by Lem. $3, \sqrt{d}=(1 / 2)\left(2 a_{0}-a_{1}+\sqrt{a_{1}^{2}+4}\right)$. It follows that $2 a_{0}=a_{1}$ and $d=a_{0}^{2}+1$. Since $d \equiv 2(\bmod 4), a_{0}$ is odd. Suppose $a_{0} \geqslant 3$. Since $0<\sqrt{\bar{U}(d)}-2\left(a_{0}-1\right)<4<\sqrt{\Delta(d)}+2\left(a_{0}-1\right)$, the quadratic form $2 X^{2}+2\left(a_{0}-1\right) X Y-a_{0} Y^{2}$ is a reduced one with the discriminant $\Delta(d)=4 d$. Since $h(d)=k(d)=1$, by the fact stated in the last part in $\S 2$, any reduced form must be $\Phi_{0}=X^{2}+2 a_{0} X Y-Y^{2}$ or $\Phi_{1}=-X^{2}+2 a_{0} X Y+Y^{2}$; this is a contradiction. Thus we have $a_{0}=1$ and $d=2$. Q.E.D.

Remark. If $d \equiv 3(\bmod 4)$, then $k(d)$ is even.
Theorem 3. Assume $d \equiv 1(\bmod 4)$; then the following (1)-(4) are equivalent:
(1) $h(d)=k(d)=1$.
(2) $d=p^{2}+4$ is a prime, where p is an odd prime or 1 . Let n $=\mathrm{Nm}(x+\omega(d) y), x, y \in Z$, such that $(x, y)=(p, n)=1$ and $|n|<(2 p-3)^{2}$; then $|n|$ is a prime or 1.
(3) $d=p^{2}+4$ is a prime, where p is an odd prime or 1 . If $x \in Z$ satisfies $0 \leqslant x<2 p-3$ and $x \neq(1 / 2)(3 p+1),(3 / 2)(p-1)$, then $|P(x)|$ is a prime or 1 .
(4) $\quad d=5$, or $|P(0)|, \cdots,|P([(1 / 2) \sqrt{d}]-1)|$ are primes and $P([(1 / 2) \sqrt{d}])$ $=-1$.

Proof. (1) $\Rightarrow(2)$: Since $k(d)=1, \omega(d)=(1 / 2)(1+\sqrt{d})=\left[a_{0}, \dot{a}_{1}\right]=(1 / 2)\left(2 a_{0}\right.$ $\left.-a_{1}+\sqrt{a_{1}^{2}+4}\right)$ for some positive integers a_{0}, a_{1}; hence $\sqrt{\bar{d}}=2 a_{0}-a_{1}-1$ $+\sqrt{a_{1}^{2}+4}$ and $d=\left(2 a_{0}-1\right)^{2}+4$. Let $p=2 a_{0}-1$; then p is a prime or 1 . For, suppose p is neither a prime nor 1 , we have $p=p_{1} p_{2}$ with $3 \leqslant p_{1} \leqslant p_{2}$. Since p_{1} is odd, we can set $p_{1}=2 b-1$ for some $2 \leqslant b \in Z$. Then $4 \mathrm{Nm}(b+\omega(d))$ $=(2 b+1)^{2}-d=(2 b-1)(2 b+3)-p^{2}$; hence p_{1} divides $\operatorname{Nm}(b+\omega(d))$. Since $\sqrt{\Delta(d)}-\operatorname{Tr}(b+\omega(d))=\sqrt{d}-(2 b+1)>0$, we have a non-negative integer n such that $0<\sqrt{\Delta(d)}-\operatorname{Tr}\left(b+n p_{1}+\omega(d)\right)<2 p_{1}$. Then the quadratic form $Q=p_{1} X^{2}+\operatorname{Tr}\left(b+n p_{1}+\omega(d)\right) X Y+\left(1 / p_{1}\right) \mathrm{Nm}\left(b+n p_{1}+\omega(d)\right) Y^{2}$ is an integral reduced form with the discriminant $\Delta(d)=d$. Since $h(d)=k(d)=1, Q$ must be equal to $\Phi_{0}=X^{2}+\operatorname{Tr}\left(a_{0}-\omega(d)\right) X Y-Y^{2}$ or $\Phi_{1}=-X^{2}+\operatorname{Tr}\left(a_{0}-\omega(d)\right) X Y$ $+Y^{2}$; this is impossible. Next we shall show that $p^{2}+4$ is a prime number. Suppose $p^{2}+4=q_{1} q_{2}$ such that $q_{1}=2 b+1$ is a prime number and $3 \leqslant q_{1}<q_{2}$. By the same argument as above, using q_{1} and b, we get the conclusion. The last part of (2) is proved by F. G. Frobenius ([4] §5).
$(2) \leftrightharpoons(3)$: Since $P(x)=(1 / 4)\left\{(2 x+1)^{2}-\left(p^{2}+4\right)\right\}=(1 / 4)\left\{(2 x-1)(2 x+3)-p^{2}\right\}$ $=\mathrm{Nm}(x+\omega(d))$, (2) implies (3).
(3) $\Rightarrow(4):$ If $p=1$, then $d=5$. If $p \geqslant 3$, then $[(1 / 2) \sqrt{d}]=\left[(1 / 2) \sqrt{p^{2}+4}\right]$ $=(1 / 2)(p-1)$ and $P([(1 / 2) \sqrt{d}])=-1$.
(4) $\Rightarrow(1)$: Since $h(5)=k(5)=1$, we assume $d \neq 5$. By Lem. 4, we have $k(d)=1$. Suppose $h(d) \geqslant 2$, and there exists a non-principal integral prime ideal \mathfrak{a} such that $1<\mathrm{Nm} \mathfrak{a}<(1 / 2) \sqrt{\Delta(d)}$. Since \mathfrak{a} is not a principal ideal, $\operatorname{Nm} \mathfrak{a}=q$ is a prime. There exists an integer b such that $\mathfrak{a}=[q, b+\omega(d)]$ $=\boldsymbol{Z} q \oplus \boldsymbol{Z}(b+\omega(d))$ and $0 \leqslant b<q<(1 / 2) \sqrt{\Delta(d)}=(1 / 2) \sqrt{d}$. Then q divides $\mathrm{Nm}(b+\omega(d))=P(b)$; this contradicts to the assumption (4). Q.E.D.

Remark. There are six fields $\boldsymbol{Q}(\sqrt{ } \bar{d})$ with $h(d)=k(d)=1$;

$$
\begin{array}{rrrrrr}
d=5 & 13 & 29 & 53 & 173 & 293 \\
p=1 & 3 & 5 & 7 & 13 & 17 .
\end{array}
$$

I do not know whether there are other such fields (cf. [4]).
By the same method we obtain similar results for real quadratic fields $\boldsymbol{Q}(\sqrt{d})$ with $h(d) k(d) \leqslant 2$.

References

[1] H. Davenport: The Higher Arithmetic. London, Hutchinson (1952).
[2] L. E. Dickson: Introduction to the Theory of Numbers. Dover Publ. Inc., New York (1957).
[3] L. K. Hua: Introduction to Number Theory. Springer-Verlag (1952).
[4] F. G. Frobenius: Über quadratische Formen, die viele Primzahlen darstellen: Sitzungsberichite, 966-980 (1912) ; Gesam. Abhand., Springer-Verlag, Bd. III, 573-587 (1968).
[5] G. Rabinovitchi: Eindeutigkeit der Zerlegung in Primzahlfactoren in quadratischen Zahlkörpern. J. reine angew. Math., 142, 153-164 (1913).
[6] R. Sasaki: On a lower bound for the class number of an imaginary quadratic field. Proc. Japan Acad., 62A, 37-39 (1986).

