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§1. Introduction. Let d be a positive square-free integer. We
denote by w(d) the algebraic integer v/ d (resp. (1/2)(1++/d)) in the real
quadratic field Qv d) if d=2 or 3 (mod 4) (resp. d=1 (mod 4)), and by
A4(d) and h(d) the discriminant and the class number of Q(+v/ d ), respectively.

The positive real quadratic irrational o(d) can be expanded into the periodic
infinite continued fraction :

a’(d)z[ao: d’l’ Sty dk]:‘[aw Qpy = v vy gy Qyy = vy Oy = - ]
=qa,+ l+l+l+ e,
a, a4, Q
where a,, a,, - -- are positive integers. We call k the period of w(d) or of

Q(+v d) and denote it by k(d).

The purpose of this note is to give a characterization of real quadratic
fields Q(v d) with h(d)=k(d)=1, in analogy to Rabinovitch’s theorem ([5],
[6]) characterizing imaginary quadratic fields whose class number is 1.

§2. Preliminaries. We recall some facts about integral indefinite
binary quadratic forms (cf. [2], Ch. VI). Let Q(4(d)) denote the set of
integral quadratic forms aX’+bXY +¢Y*? with the discriminant 4(d)=>b*
—4ae. Two forms aX*+bXY +¢Y? and o/ X*+ b0’ XY +¢'Y? in Q(4(d)) are
said to be (properly) equivalent if o/ (X" +0'X'Y' +¢'(Y') =aX?*+bXY 4 cY?,
X, Y)=(X, Y)M, for some M e SL,(Z). We denote by Q,(d(d)) the quo-
tient of Q(4(d)) by this equivalence relation. There is a natural bijection
between Q,(4(d)) and the ideal class group of Q(v d) in the narrow sense.
We shall denote its order by h.(d).

A quadratic form aX*+bXY +¢cY* in Q(4(d)) is said to be reduced if
0<v/4(d)—b<2a|<+/4(d)+b. Using the continued fraction o(d) = [a,,
Gy - -+, Aroy], we define reduced forms, in Q(4(d)), &,=(—1)'4,X*+ B, XY
+(—1)*A,,,Y?% 1=0,1, .- -, where A, and B, are inductively defined by
Ay=1, B,=Tr(a,—w(d), A, =—Nm(a,—ao(d), B +B;=2a:,4A,,, and
(Bi+VAd)/ A1) =[as.1, Cirs, @iyyy ---1. By the periodicity of w(d), we
get Dpqy =9, or Dy oy =D, according as k(d) is even or odd. Moreover any
reduced form which is equivalent to @, coincides with @, for some 1.

§3. Finiteness of the number of real quadratic fields with given class
number and period. Let w(d)=la, d,, - - -, @] be as above ; then we have
the following :

Lemma 1. (1) a;=0q-; for 0<i<k(d) and a4 =Tr (¢,—w(d)).
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Q) a,<a, for 0<i<k(d).

Proof. (1) is well-known (cf. [1]). Since a similar proof works in
case d=1 (mod 4), we shall prove (2) only in case d=2 or 3 (mod 4). Since
@, is reduced, we have 0<<+/4(d)—B,;<24,. Similarly we get 0<+/4(d)— B,
<2A4,=2. Since B,=2a,, it follows that all B, are even. Assume 4,=1
(>0). Then we have B;=B,; hence A,,,=A,. Thus we get (B,++4(d))
J2A,,) = (B,++4(d))/(24)); this means i=0 (mod k(d)). Since (B;_,
+/A(d)[(RA) =y, @yyy - - -1, We get a,<(B,_,+v4(d))/(24,) ; hence 24 ,a,
<B,_;+2w(d). Since B,_, is even, we have B,+ B, ,=2a,A4,<2a,+ B, _,.
Thus we have B;<2a,. Similarly we have 4,,,a,,,<a,+B;/2; hence 4,,,a,,,
<2a, If 0<<i<k(d)—1, then A,,,>2; hence a,,,<a,. Q.E.D.

Let (d) be the fundamental unit of the real quadratic field Qv d),
which is given by 7(d)=0iw) -1+ ® Qrw)-1, Where o’ =w(d) (resp. o(d)—1) if
d=2, 3 (mod 4) (resp. d=1 (mod 4)). Then .4 -1/ e -1 18 the (k(d)—1)-th
convergent to w(d)=Ila, dy, - -+, dyal (cf. [2], [B]). Moreover we have
Nm (p(d))=(—1)¥“; hence we have h(d)="h (d) if k(d) is odd.

Lemma 2. (3/2)*-%/ 4(d)<y(d) <« A(d)*®.

Proof. Assume d=2 or 3 (mod 4). Let p,/q, be the n-th convergent
to the infinite continued fraction w(d)=I[a,, d,, - - -, dx)1, i.e., P, and ¢, are
given by

Po=0y, DP1=0&+1, D,=0D, +Du. (=2)

%=1, =0, 0=0.0_,+¢_ . @0>2).
We shall prove p,++ d q,<(2v d)**'. By the above equations and Lem. 1
(2), we have p,++v d qo=0a,++v d <2/ d and p,++v dq =aa, +1++ d a,
<(@)*+1++v da,<(2V d)*. Inductively we get p,++ d ¢, =, (D, ,++ d q. )
FDustV d Q. <ao(2V d)"+(2V d)* 1< (2¢/ d)"*'. Next we shall show the
first inequality. Let u, denote the Fibonacci sequence which is defined
by u,=1, u,=1 and u,=u,_,+u,_, for n>>3. Then we have p,++ dq,
S,V d. For py++ dgo=a,4+v d >vd=ud and p,++ dg,=a,a,+1
+vVd=a+1++v d>2vd =uy/d. Inductively we have p,++ d q,=a.,(p,_,
AV A Q)+ BtV A Q) > WU+ UV d =u,,.v/ d. Since u,,,/u,,,>3/2
(n>0), it follows that p,+ v dq,> Uy oV d = Unss/ Uny) Wpsr ) 2y) - - -
U/ u)2v d =2(8/2)" W a =(3/2)" W/ 4(d). A similar proof works in case
d=1 (mod 4). Q.E.D.

Theorem 1. For given positive integers h and k, there exist a finite
number of real quadratic fields QW d) with k=Ik(d) and h=h(d).

Proof. Suppose there exists an infinite sequence {d,} of square-free
positive integers such that d,<<d,<--- and k(d,)=k. By Siegel’s theorem
(cf. [3] Ch. 12), we have

() lim 10g (7(d) log n(d)

imseo log v d;
—1lim 108 ((@dJR) | 15, log (A/k)logn(d)) _ 4

ive  logWd; e log v/ d;
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By Lem. 2, we have 0<logz(d,)<klog+/4(d;). It follows that the second
term in the middle of (E) is 0; hence the first term is 1, which guarantees
our assertion. Q.E.D.

§3. Main Theorems. We shall begin with the following :

Lemma 3. Let @ be a positive real number and a,, a,, a, positive inte-
gers; then we have
(1) a::[ao, dx]éﬂ—-ﬁ’a:(l/2)(2(10““1‘1_\/&1[:4‘)
(2) a=[a, d, afz]@a=(1/2)(2ao_‘az)+(1/(2‘11))\/@152(&1;12"1:4) .

Proof. Straightforward. Q.E.D.

For a square-free positive integer d, let P(X) denote the polynomial
X+ Tr (o(d)X+Nm (o(d)). We denote by [«] the greatest integer not
exceeding a real number «.

Lemma 4. Assume d=1(mod 4). If

PI1/2)v d1)=—1 (resp. P((1/2)v d ) =1),

then k(d)=1 (resp. k(d)=2 or d=5).

Proof. Set w(d)=[ay Gy * - -, Guy], then a,<o(d)=1/2)A++ d)<a,

+1; hence [(1/2v d]1=a, or a,—1. If [(1/2)y d]=a, and P(a)=dai+a,
+1, 2d,—1] by Lem. 3; this means k(d)=1. If [(1/2)v d 1=a,and P(a,)=1,
then d=2a,+1)*—4=(2a,—1)2a,—1+4) and o(d)=@1/2){2a,—2a,—1)
+4/@Cay—1)2a,—1+4)}; hence o(d)=I[a, 1, 20,—11. If a,=1, o(d)=[1, i1;
this means d=5. We shall omit a similar proof which works in case
[1/2)v d1=a,—1. Q.E.D.

Theorem 2. Assume d=2 (mod 4); then h(d)=k(d)=1 if and only if
d=2.

Proof. If d=2, then h(2)=1 and w(2)=+2 =I1, 21; hence k(2)=1.
Conversely assume h(d)=k(d)=1. Then we have + d =[a,, d,] for some
positive integers a,, a,; hence, by Lem. 3, v d =(1/2)2a,—a,++ai+4). It
follows that 2a,=a, and d=a}+1. Since d=2 (mod 4), a, is odd. Suppose
a,>3. Since 0<v A(d)—2(a,—1) <4<+ 4(d)+2(a,—1), the quadratic form
2X2 4+ 2(a,—1)XY —a,Y* is a reduced one with the discriminant 4(d)=4d.
Since h(d)=k(d)=1, by the fact stated in the last part in §2, any reduced
form must be @,=X*+20,XY—-Y* or &,=—X*+2q,XY+7Y*; this is a
contradiction. Thus we have a,=1 and d=2. Q.E.D.

Remark. If d=3 (mod 4), then k(d) is even.

Theorem 3. Assume d=1 (mod 4); then the following (1)-(4) are
equivalent :

QO hd)y=k(d)=1.

2 d=p*+4 is a prime, where p is an odd prime or 1. Let n
=Nm (x+w(d)y), x, y € Z, such that (x, y)=(p, n)=1 and |n|<(2p—3)*; then
|n| is a prime or 1.

B) d=p*+4is a prime, where p is an odd prime or 1. If x € Z satis-
fies 0<e<2p—8 and x+(1/2)Bp+1), (8/2)(p—1), then|P(x)| is a prime or 1.
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4) d=5, or|PO)|, ---,|P((1/2)v d1-1)|are primes and P([(1/2)y/ d 1)
=-—1.

Proof. (1)=(2): Since k(d)=1, o(d)=1/2)A++ d)=Ia, d,]1=(1/2)2a,
—a,++/ai+4) for some positive integers a, a,; hence v d =2a,—a,—1
++ai+4 and d=(2a,—1)*+4. Letp=2a,—1; then pis a prime or 1. For,
suppose p is neither a prime nor 1, we have p=p,p, with 3<p,<p,. Since
p, is odd, we can set p,=2b—1 for some 2<be Z. Then 4 Nm (b+ w(d))
=2b+1)*—d=(2b—1)(2b+3)—p*; hence p, divides Nm (b+w(d)). Since
such that 0<+/4(d)—Tr (b+np,+w(d)<2p,. Then the quadratic form
Q=pX*+Tr (b+np,+o(@)XY+A/p) Nm (b+np, + o(d))Y* is an integral
reduced form with the discriminant 4(d)=d. Since A(d)=Fk(d)=1, @ must
be equal to @,=X°+Tr (a,—w(d)) XY —-Y? or &,=—X*+Tr (¢,—w(d)XY
+Y?; this is impossible. Next we shall show that p*+4 is a prime number.
Suppose p*+4=4q,q, such that ¢,=2b-+1 is a prime number and 3<q,<q,.
By the same argument as above, using ¢, and b, we get the conclusion.
The last part of (2) is proved by F. G. Frobenius ([4] § 5).

@) : Since P(@) =(1/4){(@z + 17— (p*+ )} = (1/D{2r—1)2w+3)—p}
=Nm (¢ + w(d)), (2) implies (3).

B)>@): If p=1, then d=5. If p>3, then [(1/2)v d1=[(1/2)v/p*+4]
=(1/2)(p—1) and P((1/2)v d )= —1.

@)= : Since h(5)=k(5)=1, we assume d++5. By Lem. 4, we have
k(d)=1. Suppose h(d)>2, and there exists a non-principal integral prime
ideal a such that 1<Nm a<(1/2)¥/4(d). Since a is not a principal ideal,
Nm a=gq is a prime. There exists an integer b such that a=[q, b+ w(d)]
=Zq®ZOb+o(d) and 0<b<g<(1/2VA(d)=1/2)y/ d. Then ¢ divides
Nm (b+ w(d))=P(b) ; this contradicts to the assumption (4). Q.E.D.

d=5 13 29 53 173 293
p=1 38 &5 7 13 17.
I do not know whether there are other such fields (cf. [4]).

By the same method we obtain similar results for real quadratic fields
Qv d) with h(d)k(d)<2.
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