No. 3] Proc. Japan Acad., 62, Ser. A (1986) 83
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1. Introduction. Inspired by the Gel’fand-Levitan theory [1], we
have studied certain evolutional inverse problems of one space dimension
([3-6]). The purpose of the present article is to extend the related work
[2] to a multi-dimensional case. Although our problem is special, our
method would apply to more general ones.

For I=(0,1) and S'={e®*|0<0<1}, let 2 be I xS'. Then, d2=r,Ur,,
where 7,={0}XS' and 7,={1}xS'. For pe C~(2) and F e C=(62x[0, T\,
we consider the parabolic equation

ou

(1) Eyt»:zlu—pu (=, e, 0t<T)
with
(2) Ml _F  0=t<T)
oy |a2
and
(3) ul=e=0  (2€9).

Here 4=(6%/02%)+(9*/36%), v denotes the outer unit normal vector on 92 and
T,>0. The problem we study is to determine p through F'+£0 and f=ul,,
0=tT).

Henceforth, u=u(z, t; p, F') denotes the solution of (1) with (2) and (3).
A, is the differential operator —4+p with the Neumann boundary condi-
tion (8/0v)|,0=0. o(4,)={A};2 (— 00 <2,<4 < - - - —o0) denote its eigenvalues
and ¢; (|¢:]|z20y =1) is its eigenfunction corresponding to 2,. For simplicity,
each 1, is supposed to be simple : —o0<2,<1,<:-.—o00. Then we have

Theorem 1. Suppose that for F=gt)h(§) 0ZtLT,, & €00) satisfying
g0 and

(4) [ r@s@do0  @=01,-),
the relation

holds for some coefficient q. Then the equality

(6) q=p

follows, provided that p and q are real analytic.

2. Outline of the proof of Theorem 1. The solution u=u(z,t; p, F)
of (1) with (2) and (3) is given as

u=uz, t)=j: de j do.G(2, &3 t—c; DF(, &),



84 T. SUZUKI [Vol. 62(A),

where G is the Green function of —(@/3t)+A,: Gz, w;t; p)=> 7, -
P(2)p(w). Since F(t, &)=g(t)h(&), we have

uz, t; v, F)=r 7(2, t—1)g(7)dz,
0
where

(7) 2, t)= fjo e—t,(2) Lg $:(Oh(E)do..

Similarly, the relation

uz, t;q, F)=r 8(z, t—1)9(r)dr
0
holds with

(8) 52 =5, @ | v@n@da,

where {p}i, (—oo<p=Zy<---—00) and {Vi}ilo (|Villz2y=1) denote the
eigenvalues and the eigenfunctions of 4, respectively. From the assump-
tion (5), we have

j‘ & t—0)— s, t—)}g(@Dde=0 (£, 0<t<T)),

hence

(9) r(& t)=s(, 1) (Eeo2, 0t<T)

because of g#0. By the analyticity in ¢ of » and s, the equality (9) holds
for 0<t<<oco. We compare the behaviors as t—>oo of both sides of (10).
By virtue of Weyl’s formula, the assumption (4), and the fact ¢,],,+0, we
can show that each y, is simple, 1,=p,, and

0 [ sonods, =@ [ voheds, @ ean,i=01, ).

The last equalities imply ¢.(2) =c(2) (z € 82) with ¢;=1, and Theorem 1 is
reduced to the following

Theorem 2. The relation
(10) Ai=ps and  ¢ilse=Cilrilsn (=0,1,2, -..)
with ;=1 imply q=p, if p and q are real analytic.

3. Outline of the proof of Theorem 2. For sufficiently large 1>0
and s>0.

K(z w3 D=3 {eadn(2) = $u(@)gi(w) At

becomes a C*-function of (2, w) e 2x 2. Putting [|=—4,+4, and c(z, w)
= —q(2)+p(w), we have

(O—c(z, w)K (2, w; D)=c(2, 2)G(2, w; D, 2)
from the first relation of (10), where G,(z, w; p, )= 20 p()P:(W) (2, +2)"°
is the Green function of (4,4 2)°. On the other hand, the equality

K, [r="2 K.Jr,=0
oy
follows from the second equalities of (10), where I',=7,X02Co(2 X £2) and

v is the outer unit normal vector on I',. Set D={(z,2)|z2 e 2}C2Xx 2. Then,
G,(-, - ; p, 2) is real analytic in 2x 2\D. Furthermore, I'; is noncharac-
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teristic with respect to[]. Therefore, by Cauchy-Kowalevskaja’s theorem
and Holmgren’s one, K,(-, - ; 2) is real analytic in a neighborhood U, of I,
in 2x0Q\D. Actually, U, can contain all points in 2x2\D which are
reached by deforming a portion of the initial surface 7, analytically through
noncharacteristic surfaces with respect to [ ] having the same boundary.
We note that in the z-y plane, there is an analytic family of noncharac-
teristic curves {C}i<;c1 With respect to (3°/02*) —(d°/0y®) such that C,=
{x=0’ ye I}’ aCIZaCO-_’{(O’ 0), (1’ 1)}’ and U0§1<1 sz{(x7 y)|0§x<1/2’ x<
y<l—a}. Then, the family {C},<,., defined by C,={(x, 6, ¥, »)|(x, ¥) € C,,
0eS', weS'} satisfies the condition given above. Consequently, we can
take U,={(x, 0, ¥, ) |020<1/2, a<y<l—zx, e S', weS'}. Therefore,

(1) K=Kz w)=(—4,+pw)+2°K,(2, w; 2) € D' (2 X 2)
is real analytic in U, and satisfies
12) ((J—c(z, w) K =c(2, 2)0(z—w)

in QX 2 with K|,,=(@/)K|,,=0. Again by Holmgren’s theorem, we obtain
K=0in U,c2x2\D. We now recall ¢:=1 and consider the function

Fyz, w; Z)Z;) Y@ {Cidi(w) — (W)} (2,42)7°.
By the same argument for I',=02X7,, F, is shown to be real analytic in
U,={(=, 06,9, 0)|0<y<1/2, y<x<l—y, 08", weS', and the distribution
F=F(z, w)=(—4,+q(2)+2)*F,(z, w; 2) becomes zero in U,. However, we
can show that F=K by a standard argument. In particular K=0 in
U,UU,={(,6,y,w) | z+y<1; 0<x,y; 6, 0eS"; x+y}. We may regard K
=K(z, -) as a w*—C* function of z in 9'(2). Then, the same argument
for 7, implies
(13) supp K(z, -)Cly=a}U{y=1—x}.
Therefore, we have

K(z, w)= i 0,2, )@V (@—y)+ Z bu(2, ®)RIO(1—2—7),

a,(2, +), b,(2, -) € 9'(S") being w*—C?in z. Substituting this equality into
12), we get

(14) 9

b
9 4,z )= b,(2, »)=0.
Fom A2, ®) o (2, )
On the other hand, we obtain
m 0
Ci‘l’i(z)—:séz(z)+Zz=ofp'<31)<az(z, ) a;l@(x’ ')>g)(s1)

+ 2 00 <bl(z’ ) “6%27@(1—%’ ')>g><s1>’
so that
a5  0={3;(ae ), aaxsﬁ(w S)ESI(ICY 5*;7@(1““’ )

for ¢=0,1,2, ---, by (10). We can show that the relation (14)-(15) implies

z=0,1




86

T. SUZUKI [Vol. 62(A),

a,=b,=0, hence a,=0 (0<I<m) and b,=0 (0<I<n) by an induction. Thus
K=0 holds, and g=p follows from (12).
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